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Final Report

The original purpose of this project was to design algorithms and architectures for
maintenance and deployment scheduling solutions to support large-scale strategic military
airlift activities related to the needs of the Air Mobility Command (AMC). And secondarily
to adapt these solutions to other military and civilian planning and scheduling problems.
The research adopted a stochastic-modeling framework and made use of novel techniques
for planning in unpredictable, dynamic environments with complex state and action spaces.

Many of the goals associated with the project were achieved in conjunction with the
primary contract; however, several extensions were carried out by students receiving funding
from the AASERT supplementary grant. Originally, Sonia Leach, a graduate student at
Brown, was to be the primary beneficiary of the grant and, indeed, Sonia was funded by
this grant for one year. Later Sonia’s interest turned to the use of mathematically related
models and algorithms that were targeted at problems in genomics and computational
biology.

Sonia Leach worked with researchers at the National Cancer Institute in Bethesda,
Maryland, applying machine learning techniques to analyze biological data. She began
collaborations with researchers at University of Colorado Health Sciences Center in Denver,
Colorado to analyze gene expression data. She received NIH funding for this work and so,
after consultation with AFOSR, the remainder of the AASERT grant was applied to other
students working on projects concerned with stochastic modeling methods.

The stochastic models that were at the heart of the scheduling and planning problems
have broad application. Sonia’s work in genomics is a good example but there are also
related models in statistical natural language processing that are receiving a lot of attention
recently. This grant paid supplemental stipends for Niyu Gee, Keith Hall, and Don Blaheta
for their work on solutions to language learning problems. Niyu Ge completed her PhD
dissertation on pronoun anaphora (finding the referents (or ”antecedents”) of pronouns) and
has now taken a position at IBM research. Keith and Don are working on their dissertations
and should finish in the coming year with the rest of their funding coming from NSF.

Luis Ortiz also received funding from this grant and his research is directly related to
the combinatorial problems that were the primary focus of this AASERT proposal. Luis
developed new sampling methods for solving influence (decision) diagrams - an alternative
representation for stochastic planning and scheduling problems. He provided bounds on
the number of samples required to select "good” actions with high probability for what
was considered the ”traditional sampling-method” used. He proposed a new method that
requires fewer samples (both on expectations and with high probability) to obtain the same
results. Luiz will complete his dissertation and defend in September and has accepted a
postdoctoral position at AT&T labs.



TI've enclosed copies of the following papers co-authored with Sonia Leach and Luis Ortiz
as they are the most relevant to the original goals of the AASERT proposal.

¢ Thomas Dean, Robert Givan, and Sonia Leach, “Model Reduction Techniques for
Computing Approximately Optimal Solutions for Markov Decision Processes,” Pro-
ceedings of the Conference on Uncertainty in Al, 1997.

o Robert Givan, Sonia Leach, and Thomas Dean, “Bounded Parameter Markov Decision
Processes”, Proceedings of the European Conference on Planning, 1997.

e Robert Givan, Sonia Leach and Tom Dean, Bounded-parameter Markov Decision
Processes, Artificial Intelligence, Volume 122, Number 1-2, Pages 71-109, 2000.

e Luis E. Ortiz and Leslie Pack Kaelbling, “Adaptive Importance Sampling for Estima-
tion in Structured Domains,” , Proceeding of the Sixteenth Conference on Uncertainty
in Artificial Intelligence 2000.

o Luis E. Ortiz and Leslie Pack Kaelbling, “Sampling Methods for Action Selection in
Influence Diagrams,” Proceedings of the Seventeenth National Conference on Artifi-
cial Intelligence, 2000.

e Milos Hauskrecht, Luis Ortiz, Ioannis Tsochantaridis, and Eli Upfal, “Computing
Global Strategies for Multi-Market Commodity Trading,” Proceedings of the Fifth
International Conference on Artificial Intelligence Planning and Scheduling, 2000.




Mode! Reduction Techniques for Computing Approximately
Optimal Solutions for Markov Decision Processes

Thomas Dean and Robert Givan and Sonia Leach
Department of Computer Science, Brown University
[tld, rlg, sml]@cs.brown.edu
http://www.cs.brown.edu/people/

Abstract

We present a method for solving implicit
(factored) Markov decision processes (MDPs)
with very large state spaces. We intro-
duce a property of state space partitions
which we call e-homogeneity. Intuitively,
an e-homogeneous partition groups together
states that behave approximately the same
under all or some subset of policies. Borrow-
ing from recent work on model minimization
in computer-aided software verification, we
present an algorithm that takes a factored
representation of an MDP and an 0 < e <1
and computes a factored e-homogeneous par-
tition of the state space.

This partition defines a family of related
MDPs—those MDP’s with state space equal
to the blocks of the partition, and transition
probabilities “approximately” like those of
any (original MDP) state in the source block.
To formally study such families of MDPs,
we introduce the new notion of a “bounded
parameter MDP” (BMDP), which is a fam-
ily of (traditional) MDPs defined by speci-
fying upper and lower bounds on the transi-
tion probabilities and rewards. We describe
algorithms that operate on BMDPs to find
policies that are approximately optimal with
respect to the original MDP.

In combination, our method for reducing
a large implicit MDP to a possibly much
smaller BMDP using an e-homogeneous par-
tition, and our methods for selecting actions
in BMDP’s constitute a new approach for an-
alyzing large implicit MDP’s. Among its ad-
vantages, this new approach provides insight
into existing algorithms to solving implicit
MDPs, provides useful connections to work
in automata theory and model minimization,
and suggests methods, which involve vary-
ing €, to trade time and space (specifically in
terms of the size of the corresponding state
space) for solution quality.

1 Introduction

Markov decision processes (MDP) provide a formal ba-
sis for representing planning problems involving uncer-
tainty [Boutilier et al., 1995a]. There exist algorithms
for solving MDPs that are polynomial in the size of
the state space [Puterman, 1994]. In this paper, we
are interested in MDPs in which the states are spec-
ified implicitly using a set of state variables. These
MDPs have explicit state spaces which are exponential
in the number of state variables, and are typically not
amenable to direct solution using traditional methods
due to the size of the explicit state space.

It is possible to represent some MDPs using space
polylog in the size of the state space by factoring the
state-transition distribution and the reward function
into sets of smaller functions. Unfortunately, this ef-
ficiency in representation need not translate into an
efficient means of computing solutions. In some cases,
however, dependency information implicit in the fac-
tored representation can be used to speed computa-
tion of an optimal policy [Boutilier and Dearden, 1994,
Boutilier et al., 1995b, Lin and Dean, 1995].

The resulting computational savings can be explained
in terms of finding a homogeneous partition of the state
space—a partition such that states in the same block
transition with the same probability to each of the
other blocks. Such a partition induces a smaller, ex-
plicit MDP whose states are the blocks of the partition;
the smaller MDP, or reduced model is equivalent to the
original MDP in a well defined sense. It is possible
to take an MDP in factored form and find its small-
est reduced model using a number of “partition split-
ting” operations polynomial in the size of the resulting
model; however, these splitting operations are in gen-
eral propositional logic operations which are A'P-hard
and are thus only heuristically effective. The states of
the reduced process correspond to groups of states (in
the original process) that behave the same under all
policies. The original and reduced processes are equiv-
alent in the sense that they yield the same solutions,
i.e., the same optimal policies and state values.

The basic idea of computing equivalent reduced pro-



cesses has its origins in automata theory [Hartmanis
and Stearns, 1966] and stochastic processes [Kemeny
and Snell, 1960] and has surfaced more recently in the
work on model checking in computer-aided verifica-
tion [Burch et al., 1994?[Lee and Yannakakis, 1992].
Building on the work of Lee and Yannakakis [1992],
we have shown [Dean and Givan, 1997] that several
existing algorithms are asymptotically equivalent to
first constructing the minimal reduced MDP and then
solving this MDP using traditional methods that op-
erate on the flat (unfactored) representations.

The minimal model may be exponentially larger than
the original compact MDP. In response to this prob-
lem, this paper introduces the concept of an e-
homogeneous partition of the state space. This re-
laxation of the concept of homogeneous partition al-
lows states within the same block to transition with
different probabilities to other blocks so long as the
different probabilities are within e. For ¢ > 0,
there are generally e-homogeneous partitions which
are smaller and often much smaller than the small-
est homogeneous partition. In this paper we discuss
approrimate model reduction—an algorithm for find-
ing an e-homogeneous partition of a factored MDP
which is generally smaller and always no larger than
the smallest homogeneous partition.

Any e-homogeneous partition induces a family of ex-
plicit MDPs, each with state space equal to the blocks
of the partition, and transition probabilities from
each block nearly identical to those of the underlying
states. To formalize and analyze such families we in-
troduce the new concept of a bounded parameter MDP
(BMDP)—an MDP in which the transition proba-
bilites and rewards are given not as point values but
as closed intervals. In Givan et al. [1997], we describe
algorithms that operate on BMDPs to produce bounds
on value functions and thereby compute approximately
optimal policies—we summarize these methods here.
The resulting bounds and policies apply to the origi-
nal implicit MDP. Bounded parameter MDPs general-
ize traditional (exact) MDPs and are related to con-
structs found in work on aggregation methods for solv-
ing MDPs [Schweitzer, 1984, Schweitzer et al., 1985,
Bertsekas and Castafion, 1989]. Although BMDPs
are introduced here to represent approximate aggre-
gations, they are interesting in their own right and are
discussed in more detail in [Givan et al., 1997], The
model reduction algorithms and bounded parameter
MDP solution methods can be combined to find ap-
proximately optimal solutions to large factored MDPs,
varying € to trade time and space for solution quality.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of the algorithms and
representations in this paper and discuss how they fit
together. Section 3 reviews traditional and factored
MDPs and describes the generalization to bounded
parameter MDPs. Section 4 describes an algorithm
for e-reducing an MDP to a (possibly) smaller explicit
BMDP (an MDP if € = 0). Section 5 summarizes

our methods for policy selection in BMDPs, and ad-
dresses the applicability of the selected policies to any
MDP which e-reduces to the analyzed BMDP. The re-
maining sections summarize preliminary experimental
results and discuss related work.

2 Overview

Here we survey and relate the basic mathematical ob-
jects and operations defined later in this paper. We
start with a Markov decision process (MDP) M for
which we would like to compute an optimal or near
optimal policy. Figure 1.a depicts the MDP M as a
directed graph corresponding to the state-transition
diagram, and its optimal policy 7}, as found by tradi-
tional value iteration.

We assume that the state space for M (and hence the
state-transition graph) is quite large. We therefore
assume that the states of M are encoded in terms of
state variables which represent aspects of the state;
an assignment of values to all of the state variables
constitutes a complete description of a state. In this
paper, we assume that the factored representation is in
the form of a Bayesian network, such as that depicted
in Figure 1.b with four state variables {4, B, C, D}.

We speak about operations involving M, but in prac-
tice all operations will be performed symbolically us-
ing the factored representation: we manipulate sets
of states represented as formulas involving the state
variables.

Figure 1.c and Figure 1.d depict the unique smallest
homogeneous partition of the state space of M, where
the blocks are represented (respectively) implicitly and
explicitly. The process of finding this partition is called
(exact) model minimization. Factored model mini-
mization involves manipulating boolean formulas and
is N'P-hard, but heuristic manipulation may rarely
achieve this worst case.

The smallest homogeneous partition may be exponen-
tially large, so we seek further reduction (at a cost
of only approximately optimal solutions) by finding
a smaller e-homogeneous partition, depicted in Fig-
ure l.e and Figure 1.f where the blocks are again rep-
resented (respectively) implicitly and explicitly.

Any e-homogeneous partition can be used to create a
bounded parameter MDP, shown in Figure 1.g and no-
tated as M —to do this, we treat the partition blocks
as (aggregate) states and summarize everything that
we know about transitions between blocks in terms of
closed real intervals that describe the variation within
a block of the transition probabilities to other blocks,
i.e., for any action and pair of blocks, we record the
upper and lower bounds on the probability of start-
ing in a state in one block and ending up in the other
block.!

1The BMDP M naturally represents a family of MDPs,



® A S}) (@) 7
B M value

iteration
C factorization x
D *
boli boli "
symbolic symbolic . .
reduction €-reduction reduction €-reduction

©)

interval summarization& M ( 1, u) %

®

interval value iteration %
M pes

N,
(h) X ® @
%* i *
™M, ™M

Figure 1: The basic objects and operations described in this paper: (a) depicts the state-transition diagram
for an MDP M (only a single action is shown), (b) depicts a Bayesian network as an example of a symbolic
representation compactly encoding M, (c) and (d) depict the smallest homogeneous partition in (respectively) its
implicit (symbolic) and explicit forms, similarly, (e) and (f) depict an e-homogeneous partition in its implicit and
explicit forms, (g) represents the bounded-parameter MDP M summarizing the variations in the e-homogeneous
partition, and, finally, (h), (i), and (j) depict particular (exact) MDPs from the family of MDPs defined by M.
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Our BMDP analysis algorithms extract particular
MDPs from M that have intuitive characterizations.
The pessimistic model My, is the MDP within M
which yields the lowest optimal value VM at every
state. It is a theorem that Mpe, is well—deﬁned and
that V4, at each state in M is a lower bound for fol-
lowing the optimal policy TM,., in any MDP in M (as
well as in the original M from any state in the corre-
sponding block). Similarly, the optimistic model M,p:
has the best value function VMopi: VM., gives upper-
bounds for followmg any policy in M. In summary,
Vit,., and Vi give us lower and upper bounds on
the optimal value function we are really interested in,
Vp» and following 7, in M is guaranteed to achieve
at least the lower bound.

Now, armed with this high-level overview to serve as
a road map, we descend into the details.

3 Markov Decision Processes

Exact Markov Decision Processes An (exact)
Markov decision process M is a four tuple M =
(9, A, F, R) where Q is a set of states, A is a set of
actions, R is a reward function that maps each state
to a real value R(q),2 F assigns a probability to each
state transition for each action, so that for o € A and

»g€EQ,
Fpe(a) = Pr(Xi41 = | X,

where X; and U; are random variables denoting, re-
spectively, the state and action at time ¢.

=ant=a)

A policy is a mapping from states to actions, 7 : @ —
A. The value function V pr for a given policy maps
states to their expected discounted cumulative reward
given that you start in that state and act according
the given policy:

Ve (p) = R+ 7 Y Sog(7(P)) Veme (9)

9€Q

where « is the discount rate, 0 < ¥ < 1. [Puterman,
1994].

Bounded Parameter MDPs A bounded parame-
ter MDP (BMDP) is a four tuple M = (Q, A, F, R)
where Q and A are as for MDPs, and F and R are
analogous to the MDP F and R but yield closed real
intervals instead of real values. That is, for any action
o and states p,q, ( ) and Fp ¢(a) are both closed
real intervals of the form [!, «] for [ and u real numbers
with 0 € | < « < 1. For convenience, we define F

but note that the original M is not generally in this family.
Nevertheless, our BMDP algorithms compute policies and
value bounds which can be soundly applied to the original
M.

2The techniques and results in this paper easily gener-
alize to more general reward functions. We adopt a less
general formulation to simplify the presentation.

and F to be real valued functions which give the lower
and upper bounds of the intervals; likewise for R and
R. 3 To ensure that F admits well-formed transition
functions, we require that, for any action ¢ and state

p, ZqEQ Efnq(a) <1< zqegfp,q(a)-

A BMDP M = (Q, A, F,R) defines a set of exact
MDPs Fpm = {M|M [ M} where M M iff
M = (Q,A,F,R) and F and R satisfy the bounds
provided by F and R respectively. We will write
of bounding the (optimal or policy specific) value of a
state in a BMDP—by this we mean providing an up-
per or lower bound on the corresponding state value
over the entire family of MDPs F4. For a more thor-
ough] treatment of BMDPs, please see [Givan et al.,
1997).

Factored Representations In the remainder of
this paper, we make use of Bayesian networks [Pearl,
1988] to encode implicit (or factored) representa-
tions; however, our methods apply to other factored
representations such as probabilistic STRIPS opera-
tors [Kushmerick et al., 1995]. Let X = {X1,..., X}
be a set of state variables. We assume the vari-
ables are boolean, and refer to them also as flu-
ents. We represent the state at time { as a vector
Xe = (X1,6,++ .y Xm,) where X;,; denotes the value of
the ith state variable at time .

The state transition probabilities can be represented
using Bayes networks.
A two-stage temporal Bayesian network (2TBN) is a
directed acyclic graph consisting of two sets of vari-
ables {X;.:} and {Xi¢4+1} in which directed arcs in-
dicating dependence are allowed from the variables in
the first set to variables in the second set and between
variables in the second set.[Dean and Kanazawa, 1989)
The state-transition probabilities are now factored as

m
= H Pr(X; ¢41|Parents(X; t41), U)
i=1

PI‘(XH.lIXt, Ug)

where Parents(X) denotes the parents of X in the
2TBN and each of the conditional probability distri-
butions Pr(X;:4+1|Parents(Xj¢41),U;) can be repre-
sented as a conditional probability table or as a de-
cision tree—we choose the latter in this paper follow-
ing [Boutilier et al., 1995b). We enhance the 2TBN
representation to include actions and reward func-
tions; the resulting graph is called an influence dia-
gram [Howard and Matheson, 1984].

Figure 2 illustrates a factored representation with
three state variables, X = {P, @, S}, and describes the
transition probabilities and rewards for a particular ac-
tion. The factored form of the transition probabilities

8To simplify the remainder of the paper, we assume
that the reward bounds are always tight, i.e., that R =
R. The generalization to nontrivial bounds on rewards is
straightforward.
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Figure 2: A factored representation with three state
variables, P, Q and S, and reward function R.
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Figure 3: Two e-homogeneous partitions for the MDP
described in Figure 2: (a) the smallest exact homoge-
neous partition (¢ = 0) and (b) a smaller partition for
€ = 0.05.

is

Pr(Xi411X:,U:) = Pr(Pet1|P:y Qt) - Pr(Qe41) -

Pr(S;4115:, Q:)
where in this case X; = (P, Q¢, St).

4 Model Reduction Methods

In this section, we describe a family of algorithms that
take as input an MDP and a real value € between 0 and
1 and compute a bounded parameter MDP where each
closed real interval has extent less than or equal to e.
The states in this BMDP correspond to the blocks of a
partition of the state space in which states in the same
block behave approzimately the same with respect to
the other blocks. The upper and lower bounds in the
BMDP correspond to bounds on the transition prob-
abilities (to other blocks) for states that are grouped
together.

We first define the property sought in the desired state
space partition. Let P = {Bj,..., B,} be a partition
of Q.

Definition 1 A partition P = {B,...,Bn} of the
state space of an MDP M has the property of e-
approximate stochastic bisimulation homogeneity with
respect to M for € such that 0 < € < 1 if and only if for
each B;, B; € P, for each o € A, for each p,q € B;,

|R(p) — R(g)| < ¢, and
ZfEB,‘ FP"(a) - Zrij qu(a) <e

For conciseness, we say P is e-homogeneous.*

Figure 3 shows two e-homogeneous partitions for the
MDP described in Figure 2.

We now explain how we construct an e-homogeneous
partition. We first describe the relationship between
every e-homogeneous partition and a particular simple
partition based on immediate reward.

Definition 2 A partition P’ is a refinement of a par-
tition P if and only if each block of P' is a subset of
some block of P; in this case, we say that P is coarser
than P’, and is a clustering of P’

Definition 3 The immediate reward partition is the
partition in which two states, p and q, are in the same
block if and only if they have the same reward.

Definition 4 A partition P is e-uniform with respect
to a function f : @ — R if for every two states p and
g in the same block of P, |f(p) — f(g)| < e.

Every e-homogeneous partition is a refinement of some
e-uniform clustering (with respect to reward) of the
immediate reward partition. Our algorithm starts by
constructing an e-uniform reward clustering Po of the
immediate reward partition.> We then refine this ini-
tial partition by splitting® blocks repeatedly to achieve
e-homogeneity. We can decide which blocks are can-
didates for splitting using the following local property
of the blocks of an e-homogenous partition:

Definition 5 We say that a block C of a partition P
is e-stable with respect to a block B iff for all actions
o and all states p € C and ¢ € C we have

ZFpr(a) - Equ(a) <e

reB reB
We say that C is e-stable if C is e-stable with respect
to every block of P and action in A.

The definitions immediately imply that a partition is e-
homogenous iff every block in the partition is e-stable.

The model e-reduction algorithm simply checks each
block for e-stability, splitting unstable blocks until qui-
escence, i.e., until there are no unstable blocks left to
split. Specifically, when a block C is found to be unsta-
ble with respect to a block B, we replace C in the par-
tition by a set” of sub-blocks Cy, . . ., Ck such that each

4For the case of € = 0, e-approximate stochastic bisim-
ulation homogeneity is closely related to the substitution
property for finite automata developed by Hartmanis and
Stearns [1966] and the notion of lumpability for Markov
chains {Kemeny and Snell, 1960).

5There may be many such clusterings, we currently
choose a coarsest one arbitrarily.

6The term splitting refers to the process whereby a block
of a partition is divided into two or more sub-blocks to
obtain a refinement of the original partition.

"There may be more than one choice, as discussed
below.
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Figure 4: Clustering sub blocks that behave approxi-
mately the same. With € = 0.01 there are two smallest
clusterings.

C; is a maximal sub-block of C that is e-stable with re-
spect to B. Note that at all times the blocks of the par-
tition are represented in factored form, e.g., as DNF
Jormulas over the state variables. The block splitting
operation manipulates these factored representations,
not explicit states. This method is an extension to
Markov decision processes of the deterministic model
reduction algorithm of Lee and Yannakakis [1992].

If ¢ = 0, the above description fully defines the
block splitting operation, as there exists a unique set
of maximal, stable sub-blocks. Furthermore, in this
case, the algorithm finds the unique smallest homo-
geneous partition, independent of the order in which
unstable blocks are split. We call this partition the
minimal model (we also use this term to refer to the
MDP derived from this partition by treating its blocks
as states).

However, if € > 0, then we may have to choose among
several possible ways of splitting C' as shown in the
following example. Figure 4 depicts a block, C, and
two other blocks, B and B’, such that states in C
transition to states in B and B’ under some action a.
We partition C into three sub blocks {C1, C3, C3} such
that states in each sub block have the same transition
probabilities with respect to @, B, and B’. In building
an 0.01-approximate model, we might replace C by the
two blocks C; and C;UC3, or by the two blocks C3 and
C, U Cy; it is possible to construct examples in which
each of these is the most appropriate choice because
the splits of other blocks induced later®. We require
only that the clustering selected is not the refinement
of another e-uniform clustering, i.e., that it is as coarse
as possible.

Because we make the clustering decisions arbitrarily,
our algorithm does not guarantee finding the smallest
e-homogenous partition when € > 0, nor that the par-
tition found for €; will be smaller (or even as small) as

8The result is additionally sensitive to the order in
which unstable blocks are split—splitting one e-unstable
block may make another become e-stable.

the partition found for €2 < €;. However, it is a the-
orem that the partition found will be no larger than
the unique smallest 0-homogenous partition.

Theorem 1 For € > 0, the partition found by model
e-reduction using any clustering technique is coarser
than, and thus no larger than the minimal model.

Theorem 2 For 0 < €2 < €1, the smallest ;-
homogenous partition is no larger than the smallest
€2-homogenous partition. The model e-reduction algo-
rithm, augmented by an (impractical) search over all
clustering decisions, will find these smallest partitions.

Theorem 3 Given a bound and an MDP whose
smallest e-homogenous partition is polynomial in size,
the problem of determining whether there erists an e-
homogenous partition of size no more than the bound
is NP-complete.

These theorems imply that using an € > 0 can only
help us, but that our methods may be sensitive to just
which € we choose, and are necessarily heuristic.

Currently our implementation uses a greedy cluster-
ing algorithm; in the future we hope to incorporate
more sophisticated techniques from the learning and
pattern recognition literature to find a smaller cluster-
ing locally within each SPLIT operation (though this
does not guarantee a smaller final partition).

Each e-homogenous partition P of an MDP M =
(@, A, F, R) induces a corresponding BMDP Mp =
(9, A, F, R) in a straightforward manner. The states
of Mp are just the blocks of P and the actions are the
same as those in M. The reward and transition func-
tions are defined to give intervals bounding the pos-
sible reward and block transition probabilities within
each block: for blocks B and C and action «,

R(B) =[ minyep R(p), maxyep R(p) ]

Fpola) =[ minep Y ec Fpgla),
maxXpeB Y gec Fp,q(e) ]

We can then use the methods in the next section to
give intervals bounding the optimal value of each state
in Mp and select a policy which guarantees achieving
at least the lower bound value at each state. The fol-
lowing theorem then implies the value bounds apply
to the states in M, and are achieved or exceeded by
following the corresponding policy in M.

We first note that any function on the blocks of P
can be extended to a function on the states of M: for
each state we return the value assigned to the block of
P in which it falls. In this manner, we can interpret
the value bounds and policies for Mp as bounds and
policies for M.

Theorem 4 For any MDP M and e-homogenous par-
tition P of the states of M, sound (optimal or policy



specific) value bounds for Mp apply also to M (by
extending the policy and value functions to the state
space of M according to P).

5 Interval Value Iteration

We have developed a variant of the value iteration al-
gorithm for computing the optimal policy for exact
MDPs[Bellman, 1957] that operates on bounded pa-
rameter MDPs. A BMDP M represents a family of
MDPs F a4, implying some degree of uncertainty as to
which MDP in the family actions will actually be taken
in. As such, there is no specific value for following a
policy from a start state—rather, there is a window of
possible values for following the policy in the different
MDPs of the family. Similarly, for each state there is
a window of possible optimal values over the MDPs in
the family Faq. Our algorithm can compute bounds
on policy specific value functions as well as bounds on
the optimal value function. We have also shown how
to extract from these bounds a specific “optimal” pol-
icy which is guaranteed to achieve at least the lower
bound value in any actual MDP from the family Faq
defined by the BMDP. We call this policy mpes, the
pessimistic optimal policy.

We call this algorithm, interval value iteration (IV1
for optimal values, and IV I, for policy specific val-
ues). The algorithm is based on the fact that, if we
only knew the rank ordering of the states’ values, we
would easily be able to select an MDP from the fam-
ily Fa which minimized or maximized those values,
and then compute the values using that MDP. Since
we don’t know the rank ordering of states’ values, the
algorithm uses the ordering of the current estimates of
the values to select a minimizing (maximizing) MDP
from the family, and performs one iteration of stan-
dard value iteration on that MDP to get new value
estimates. These new estimates can then be used to
select & new minimizing (maximizing) MDP for the
next iteration, and so forth.

Bounded parameter MDPs are interesting objects and
we explore them at greater length in [Givan et al.,
1997]. In that paper, we prove the following results
about IV1.

Theorem 5 Given a BMDP M and a specific pol-
icy w, IVI, converges at each state to lower and up-

per bounds on the value of © at that state over all the
MDPs in Fay.

Theorem 6 Given a BMDP M, IVI converges at
each state to lower and upper bounds on the optimal
value of that state over all the MDPs in Fpy.

Theorem 7 Given a BMDP M, the policy mpes ez-
tracted by assuming that states actual values are the
IV I-converged lower bounds has a policy specific lower
bound (from IVI, ) in M equal to the (non policy spe-
cific) IV I-converged lower bound. No other policy has

a higher policy specific lower bound.

6 Related Work and Discussion

This paper combines a number of techniques to address
the problem of solving (factored) MDPs with very
large states spaces. The definition of e-homogeneity
and the model reduction algorithms for finding e-
homogeneous partitions are new, but draw on tech-
niques from automata theory and symbolic model
checking. Burch et al. [1994] is the standard refer-
ence on symbolic model checking for computer-aided
design. Our reduction algorithm and its analysis were
motivated by the work of Lee and Yannakakis [1992]
and Bouajjani et al. [1992].

The notion of bounded-parameter MDP is also new,
but is related to aggregation techniques used to speed
convergence in iterative algorithms for solving exact
MDPs. Bertsekas and Castafion [1989] use the notion
of aggregated Markov chains and consider grouping
together states with approximately the same residuals
(i.e., difference in the estimated value function from
one iteration to the next during value iteration).

The methods for manipulating factored representa-
tions of MDPs were largely borrowed from Boutilier et
al. [1995b), which provides an iterative algorithm for
finding optimal solutions to factored MDPs. Dean
and Givan [1997] describe a model-minimization algo-
rithm for solving factored MDPs which is asymptot-
ically equivalent to the algorithm in [Boutilier et al.,
1995b].

Boutilier and Dearden [?] extend the work in [Boutilier
et al., 1995b] to compute approximate solutions to fac-
tored MDPs by associating upper and lower bounds
with symbolically represented blocks of states. States
are aggregated if they have approximately the same
value rather than if they behave approximately the
same behavior under all or some set of policies, though
it often turns out that states with nearly the same
value have nearly the same dynamics.

There are two significant differences between our ap-
proximation techniques and those of Boutilier and
Dearden. First, we partition the state space and
then perform interval value iteration on the resulting
bounded-parameter MDP, while Boutilier and Dear-
den repeatedly partition the state space. Second, we
use a fixed € for computing a partition while Boutilier
and Dearden, like Bertsekas and Castafion, repartition
the state space (if necessary) on each iteration on the
basis of the current residuals, and, hence, (effectively)
they use different ¢’s at different times and on different
portions of the state space. Despite these differences,
we conjecture that the two algorithms perform asymp-
totically the same. Practically speaking, we expect
that in some cases, repeatedly and adaptively comput-
ing partitions may provide better performance, while
in other cases, performing the partition once and for
all may result in a computational advantage.



We have written a prototype implementation of the
model reduction algorithms described in this paper,
along with the BMDP evaluation algorithms (IVI) re-
ferred to. Using this implementation we have been able
to demonstrate substantial reductions in model size,
and increasing reductions with increasing ¢. However,
the MDPs we have been reducing are still “toy” prob-
lems and while they were not concocted expressly to
make the algorithm look good, these empirical results
are still of questionable value. Further research is nec-
essary before these techniques are adequate to handle
a real-world large scale planning problem in order to
give convincing empirical data.

Finally, we believe that by formalizing the notions
of approximately similar behavior, approximately
equivalent models, and families of closely related
MDPs the mathematical entities corresponding to e-
homogeneous partitions, e-reductions, and bounded-
parameter MDPs provide valuable insight into fac-
tored MDPs and the prospects for solving them ef-
ficiently.
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Abstract. In this paper, we introduce the notion of an bounded param-
eter Markov decision process (BMDP) as a generalization of the familiar
ezact MDP. A bounded parameter MDP is a set of exact MDPs spec-
ified by giving upper and lower bounds on transition probabilities and
rewards (all the MDPs in the set share the same state and action space).
BMDPs form an efficiently solvable special case of the already known
class of MDPs with imprecise parameters (MDPIPs). Bounded parame-
ter MDPs can be used to represent variation or uncertainty concerning
the parameters of sequential decision problems in cases where no prior
probabilities on the parameter values are available. Bounded parameter
MDPs can also be used in aggregation schemes to represent the varia-
tion in the transition probabilities for different base states aggregated
together in the same aggregate state.

We introduce interval value functions as a natural extension of tradi-
tional value functions. An interval value function assigns a closed real
interval to each state, representing the assertion that the value of that
state falls within that interval. An interval value function can be used
to bound the performance of a policy over the set of exact MDPs asso-
ciated with a given bounded parameter MDP. We describe an iterative
dynamic programming algorithm called interval policy evaluation which
computes an interval value function for a given BMDP and specified pol-
icy. Interval policy evaluation on a policy = computes the most restrictive
interval value function that is sound, i.e., that bounds the value function
for m in every exact MDP in the set defined by the bounded parameter
MDP. We define optimistic and pessimistic notions of optimal policy, and
provide a variant of value iteration [Bellman, 1957] that we call interval
value iteration which computes a policies for a BMDP that are optimal
in these senses.

1 Introduction

The theory of Markov decision processes (MDPs) provides the semantic founda-
tions for a wide range of problems involving planning under uncertainty [Boutilier
et al., 1995a, Littman, 1997]. In this paper, we introduce a generalization of
Markov decision processes called bounded parameter Markov decision processes
(BMDPs) that allows us to model uncertainty in the parameters that comprise



an MDP. Instead of encoding a parameter such as the probability of making a
transition from one state to another as a single number, we specify a range of
possible values for the parameter as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDPs, i.e.,
the set of all MDPs whose parameters fall within the specified ranges. From this
perspective, we may have no justification for committing to a particular MDP
in this family, and wish to analyze the consequences of this lack of commitment.
Another interpretation for a BMDP is that the states of the BMDP actually
represent sets (aggregates) of more primitive states that we choose to group
together. The intervals here represent the ranges of the parameters over the
primitive states belonging to the aggregates. While any policy on the original
(primitive) states induces a stationary distribution over those states which can
be used to give prior probabilities to the different transition probabilities in the
intervals, we may be unable to compute these prior probabilities—the original
reason for aggregating the states is typically to avoid such expensive computation
over the original large state space.

BMDPs are a efficiently solvable specialization of the already known Markov
Decision Processes with Imprecisely Known Transition Probabilities (MDPIPs).
In the related work section we discuss in more detail how BMDPs relate to
MDPIPs.

In a related paper, we have shown how BMDPs can be used as part of a
strategy for efficiently approximating the solution of MDPs with very large state
spaces and dynamics compactly encoded in a factored (or implicit) representa-
tion [Dean et al., 1997). In this paper, we focus exclusively on BMDPs, on the
BMDP analog of value functions, called interval value functions, and on policy
selection for a BMDP. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, called inter-
val policy evaluation and interval value iteration (IVI) respectively. We define
the desired output values for these algorithms and prove that the algorithms
converge to these desired values in polynomial-time, for a fixed discount factor.
Finally, we consider two different notions of optimal policy for an BMDP, and
show how IVI can be applied to extract the optimal policy for each notion. The
first notion of optimality states that the desired policy must perform better than
any other under the assumption that an adversary selects the model parameters.
The second notion requires the best possible performance when a friendly choice
of model parameters is assumed.

2 Exact Markov Decision Processes

An (exact) Markov decision process M is a four tuple M = (Q, A, F, R) where
Q is a set of states, A is a set of actions, R is a reward function that maps each
state to a real value R(q),! and F is a state-transition distribution so that for

! The techniques and results in this paper easily generalize to more general reward
functions. We adopt a less general formulation to simplify the presentation.



a€ Aandp, g€ Q,
Fpe(a) = Pr(Xe41 = q|X: =p,U; = @)

where X; and U, are random variables denoting, respectively, the state and
action at time ¢. When needed we will write FM denote the transition function
of the MDP M.

A policy is a mapping from states to actions, 7 : @ — A. The set of all
policies is denoted I7. An MDP M together with a fixed policy 7 € II determines
a Markov chain such that the probability of making a transition from p to g is
defined by Fpq(m(p)). The ezpected value function (or simply the value function)
associated with such a Markov chain is denoted Vis,r. The value function maps
each state to its ezpected discounted cumulative reward defined by

VM,‘M’( = +7Zqu VMW(Q)
q€Q

where 0 < v < 1 is called the discount rate.? In most contexts, the relevant MDP
is clear and we abbreviate Vs« as Vr.

The optimal value function Vj; (or simply V* where the relevant MDP is
clear) is defined as follows.

V*(p) = max | R(p) +7)_ Fygl@)V*(9)
q€Q

The value function V* is greater than or equal to any value function V; in the
partial order >4om defined as follows: V) >dom V2 if and only if for all states g,
Vilg) = Va(9)-

An optimal policy is any policy 7* for which V* = V.. Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the max in the definition of V* with argmax.

3 Bounded Parameter Markov Decision Processes

An bounded parameter MDP is a four tuple M = (Q, A, F, R) where Q and A
are defined as for MDPs, and F and R are analogous to the MDP F and R but
yield closed real intervals instead of real values. That is, for any action a and
states p, g, B(p) and F}, 4(a) are both closed real intervals of the form [l, u] for !
and u real numbers with [ < u, where in the case of F werequire 0 <l <u<13
To ensure that F admits well-formed transition functions, we require that for

2 In this paper, we focus on expected discounted cumulative reward as a performance
criterion, but other criteria, e.g., total or average reward [Puterman, 1994], are also
applicable to bounded parameter MDPs.

3 To simplify the remainder of the paper, we assume that the reward bounds are always
tight, i.e., that for all g € Q, for some real I, R(g) = [I,], and we refer to ! as R(q).
The generahzatlon to nontrivial bounds on rewards is straightforward.




Fig. 1. The state-transition diagram for a simple bounded parameter Markov decision
process with three states and a single action. The arcs indicate possible transitions and
are labeled by their lower and upper bounds.

any action o and state p, the sum of the lower bounds of qu(a) over all states
g must be less than or equal to 1 while the upper bounds must sum to a value
greater than or equal to 1. Figure 1 depicts the state-transition diagram for a
simple BMDP with three states and one action.

A BMDP M = (Q, A, F, R) defines a set of exact MDPs which, by abuse
of notation, we also call M. For exact MDP M = (Q', A, F', R'), we have
MeMif Q=0 A=A, and for any action o and states p,g, R'(p) is in
the interval R(p) and F; o(e) is in the interval Fp 4(a). We rely on context to
distinguish between the tuple view of M and the exact MDP set view of M. In
the definitions in this section, the BMDP M is implicit.

An interval value function V is a mapping from states to closed real intervals.
We generally use such functions to indicate that the given state’s value falls
within the selected interval. Interval value functions can be specified for both
exact and BMDPs. As in the case of (exact) value functions, interval value
functions are specified with respect to a fixed policy. Note that in the case of
BMDPs a state can have a range of values depending on how the transition
and reward parameters are instantiated, hence the need for an interval value
function.

For each of the interval valued functions F', R, V we define two real valued
functions which take the same arguments and give the upper and lower interval
bounds, denotedh?'-, R,V,and F, R, V, respectively. So, for example, at any
state ¢ we have V(q) = [V(q), V(q)]-

Definition1. For any policy 7 and state g, we define the interval value V; (q)
of 7 at ¢ to be the interval

[ Jnin Vi, () max Vig,r (q)}

In Section 5 we will give an iterative algorithm which we have proven to converge
to Vy. In preparation for that discussion we now state that there is at least one



specific MDP in M which simultaneously achieves Vr(q) for all states ¢ (and
likewise a specific MDP achieving V. (¢) for all g).

Definition 2. For any policy 7, an MDP in M is m-mazimizing if it is a possible
value of argmaxprem Vi, and it is w-minimizing if it is in arg minprem Vagr.

Theorem 3. For any policy m, there exist m-mazimizing and m-minimizing MDPs

in M.

This theorem implies that V. is equivalent to minprem Var,» where the min-
imization is done relative to >4om, and likewise for V using max. We give an al-
gorithm in Section 5 which converges to V. by also converging to a 7-minimizing
MDP in M (likewise for V).

We now consider how to define an optimal value function for a BMDP. Con-
sider the expression max.enmr V,r. This expression is ill-formed because we have
not defined how to rank the interval value functions f/',, in order to select a maxi-
mum. We focus here on two different ways to order these value functions, yielding
two notions of optimal value function and optimal policy. Other orderings may
also yield interesting results. .

First, we define two different orderings on closed real intervals:

l; <y, or

[11, w1] Spes [I2,u2] <= { I =1; and u; < uy

O P e

We extend these orderings to partially order interval value functions by relating
two value functions Vi < V; only when i (g) < Vz(q) for every state g. We can
now use either of these orderings to compute maxre g Vi, yielding two definitions
of optimal value function and optimal policy. However, since the orderings are
partial (on value functions), we must still prove that the set of policies contains
a policy which achieves the desired maximum under each ordering (i.e., a policy
whose interval value function is ordered above that of every other policy).

Definition4. The optimistic optimal value function Vopc and the pessimistic
optimal value function Vpes are given by:

Vopt = Maxqem Vr using <opt to order interval value functions
Vies = MaXrermr Vi Using <pes to order interval value functions
P € Sp

We say that any policy 7 whose interval value function Vy is >opt (Zpes) the value
functions Vi of all other policies 7' is optimistically (pessimistically) optimal.

Theorem 5. There exists at least one optimistically (pessimistically) optimal
policy, and therefore the definition of Vopt (Vpes) is well-formed.



The above two notions of optimal value can be understood in terms of a
game in which we choose a policy 7 and then a second player chooses in which
MDP M in M to evaluate the policy. The goal is to get the highest? resulting
value function Vj,». The optimistic optimal value function’s upper bounds Vopt
represent the best value function we can obtain in this game if we assume the
second player is cooperating with us. The pessimistic optimal value function’s
lower bounds V., represent the best we can do if we assume the second player
is our adversary, trying to minimize the resulting value function.

In the next section, we describe well-known iterative algorithms for comput-
ing the exact MDP optimal value function V*, and then in Seciion 5 we will

describe similar iterative algorithms which compute the BMDP variants Vopt
(Vpes)-

4 Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
In the next section, we describe novel algorithms for computing the interval
analogs of these value functions for bounded parameter MDPs.

We present results from the theory of exact MDPs which rely on the concept
of normed linear spaces. We define operators, VI, and VI, on the space of
value functions. We then use the Banach fixed-point theorem (Theorem 6) to
show that iterating these operators converges to unique fixed-points, Vr and V*
respectively (Theorems 8 and 9).

Let V denote the set of value functions on Q. For each v € V, define the (sup)
norm of v by

lloll = max{v(g)l.

We use the term convergence to mean convergence in the norm sense. The space
V together with ||-|| constitute a complete normed linear space, or Banach Space.
If U is a Banach space, then an operator T': U — U is a contraction mapping if
there exists a A, 0 < X < 1 such that ||Tv — Tuf| < Allv —u|| for all w and v in U.
Define VI:V —V and for each m € IT, VI, : V — V on each p€ Q by

VI(©)(p) = max | R(p) +7 3 Fpo(e)v(q)
q€Q

VI:(v)(p) = R(p) +7 Y Fog(m(p))o(9)-
q€Q
In cases where we need to make explicit the MDP from which the transition
function F originates, we write VIp » and VIp to denote the operators VI,
and VT as just defined, except that the transition function F is F M,
Using these operators, we can rewrite the expression for V* and V as

Vi (p) = VI(V*)(p) and Vi(p) = VI (Vx)(p)
* Value functions are ranked by >dom-



for all states p € Q. This implies that V* and V are fixed points of VI and VI,
respectively. The following four theorems show that for each operator, iterating
the operator on an initial value estimate converges to these fixed points.

Theorem 6. For any Banach space U and contraction mapping T : U — U,
there exists a unique v* in U such that Tv* = v*; and for arbitrary v° in U, the
sequence {v"} defined by v™ = Tv"~! = T™0 converges to v*.

Theorem 7. VI and VI, are contraction mappings.

Theorem 6 and Theorem 7 together prove the following fundamental results
in the theory of MDPs.

Theorem 8. There exists a unique v* € V satisfying v* = VI(v*); furthermore,
v* = V*. Similarly, V; is the unique fized-point of VI,.

Theorem 9. For arbitraryv® € V, the sequence {v"} defined by v* = VI(v"~1)
= VI™(v°) converges to V*. Similarly, iterating VI, converges to V.

An important consequence of Theorem 9 is that it provides an algorithm for
finding V* and V. In particular, to find V*, we can start from an arbitrary
initial value function v° in V, and repeatedly apply the operator VI to obtain
the sequence {v"}. This algorithm is referred to as value iteration. Theorem 9
guarantees the convergence of value iteration to the optimal value function.
Similarly, we can specify an algorithm called policy evaluation which finds V; by
repeatedly apply VI, starting with an initial v € V.

The following theorem from [Littman et al., 1995] states a convergence rate of
value iteration and policy evaluation which can be derived using bounds on the
precision needed to represent solutions to a linear program of limited precision
(each algorithm can be viewed as solving a linear program).

Theorem 10. For fized v, value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP pa-
rameters.

5 Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms which operate
on bounded parameter MDPs. We first define the interval equivalent of policy
evaluation IV I, which computes V., and then define the variants IV I,y and

IV Iy, which compute the optimistic and pessimistic optimal value functions.



5.1 Interval Policy Evaluation

In direct analogy to the definition of VI in Section 4, we define a function IV I,
(for interval value iteration) which maps interval value functions to other interval
value functions. We have proven that iterating I VI, on any initial interval value
function produces a sequence of interval value functions which converges to V;
in a polynomial number of steps, given a fixed discount factore .

IVI(V) is an interval value function, defined for each state p as follows:

IVI(V)(p) = [ﬂiﬂ Vi) (X)(p) max VIM,W(p}(V){p)] :

We define IVI, and TV, to be the corresponding mappings from value func-
tions to value functlons (note that for input V, IVI V1. does not depend on V and
so can be viewed as a function from V to V——-hkew1se for TVI, and V).

The algorithm to compute IV I, is very similar to the standard MDP com-
putation of VI, except that we must now be able to select an MDP M from
the family M which minimizes (maximizes) the value attained. We select such
an MDP by selecting a function F within the bounds specified by F to mini-
mize (maximize) the value—each possible way of selecting F corresponds to one
MDP in M. We can select the values of Fy4(c) independently for each o and
p, but the values selected for different states g (for fixed a and p) interact: they
must sum up to one. We now show how to determine, for fixed a and p, the
value of Fy4(a) for each state ¢ so as to minimize (maximize) the expression
> seo (Fpg(@)V(g)). This step constitutes the heart of the IVI algorithm and
the only significant way the algorithm differs from standard value iteration.

The idea is to sort the possible destination states ¢ into increasing (decreas-
ing) order according to their V. (V') value, and then choose the transition prob-
abilities within the intervals specified by F so as to send as much probability
mass to the states early in the ordering. Let ¢i,¢3,...,qx be such an ordering
of @—so that, in the minimizing case, for all i and j if 1 < ¢ < j < k then
¥ (gi) < V(g;) (increasing order).

Let r be the index 1 < r < k which maximizes the following expression
without letting it exceed 1:

r—1

-Fl’vq' E—P Q-

r is the index into the sequence g; such that below index r we can assign the
upper bound, and above index r we can assign the lower bound, with the rest of
the probability mass from p under a being assigned to ¢,. Formally, we choose
Fpe(a) for all ¢ € Q as follows:

Fple)ifj<r
Fj(a)z{ Pigi
P _pq‘(a) ifj>r

1

Fpg(a)=1- Z Fpo.(e)
t=1,i%r



Fig. 2. An illustration of the basic dynamic programming step in computing an ap-
proximate value function for a fixed policy and bounded parameter MDP. The lighter
shaded portions of each arc represent the required lower bound transition probabil-
ity and the darker shaded portions represent the fraction of the remaining transition
probability to the upper bound assigned to the arc by F.

Figure 2 illustrates the basic iterative step in the above algorithm, for the
maximizing case. The states g; are ordered according to the value estimates in
V. The transitions from a state p to states g; are defined by the function F such
that each transition is equal to its lower bound plus some fraction of the leftover
probability mass.

Techniques similar to those in Section 4 can be used to prove that iterating
IVI, (IVI,) converges to V., (V). The key theorems, stated below, assert
first that IV I, is a contraction mapping, and second that V. is a fixed-point of
IVI_, and are easily proven®.

Theorem 11. For any policy w, IVI, and IVI, are contraction mappings.

Theorem 12. For any policy m, V. is a fized-point of IVI, and Vaof IVI,.

These theorems, together with Theorem 6 (the Banach fixed-point theorem) im-
ply that iterating IV I, on any initial interval value function converges to Vx,
regardless of the starting point.

Theorem 13. For fized v, interval policy evaluation converges to the desired in-
terval value function in a number of steps polynomial in the number of states, the
number of actions, and the number of bits used to represent the MDP parameters.

5 The min over members of M is dealt with using a technique similar to that used to
handle the max over actions in the same proof for V*



5.2 Interval Value Iteration

As in the case of VI, and VI, it is straightforward to modify I VI « so that it
computes optimal policy value intervals by adding a maximization step over the
different action choices in each state. However, unlike standard value iteration,
the quantities being compared in the maximization step are closed real intervals,
so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration—other variations
are possible.

VI (V)p) = B [Ar,rg;; VImo(V)(p), max Vina(¥ )(p)]

V(10 = gpex | min VI alD)(5), s VIna(7)0)]

The added maximization step introduces no new difficulties in implementing
the algorithm. We discuss convergence for IV I,,;—the convergence results for
IVI,,ea are similar. We write TV I, for the upper bound returned by IVIopt,
and we consider mo,,, a function from V to V because I—Vfopt(f/) depends
only on V. IVI,, can be easily shown to be a contraction mapping, and it
can be shown__that f/opt is a fixed point of IVIopt. It then follows that TV—I_opt
converges to Vope in polynomially many steps. The analogous results for IVZ,,,
are somewhat more problematic. Because the action selection is done according
to <opt, which focuses primarily on the interval upper bounds, Mopt is not

properly a mapping from V to V, as IVIDpt(f/) depends on both V and V.

However, for any particular value function V and interval value function V such
that V =V, we can write IV, y for the mapping from V to V which carries V

to IV, ,(V). We can then show that for each V, IV ¢,v converges as desired.

—=opt Y =———=0p T
The algorithm must then iterate IV I,,; convergence to some upper bound V,

and then iterate IVJ , i to converge to the lower bounds V—each convergence

within polynomial time.

Theorem14. A. IVIyy and IVI,,, are contraction mappings.

B. For any value functions V, IV, v and IV Iy, v are contraction mappings.
Theorem 15. Vopt is a fired-point of IVIopt , and Vpes of IVIPN.

Theorem 16. For fized v, iteration of IVI,,m converges to Vopt, and iteration
of IVIpe, converges to Vpes, in polynomially many iterations in the problem size
(including the number of bits used in specifying the parameters).

6 Policy Selection, Sensitivity Analysis, and Aggregation

In this section, we consider some basic issues concerning the use and interpre-
tation of bounded parameter MDPs. We begin by reemphasizing some ideas
introduced earlier regarding the selection of policies.



To begin with, it is important that we are clear on the status of the bounds
in a bounded parameter MDP. A bounded parameter MDP specifies upper and
lower bounds on individual parameters; the assumption is that we have no addi-
tional information regarding individual exact MDPs whose parameters fall with
those bounds. In particular, we have no prior over the exact MDPs in the family
of MDPs defined by a bounded parameter MDP.

Policy selection Despite the lack of information regarding any particular MDP,
we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDP, i.e., the one in which we will ultimately have to carry out
some policy, is decided by some outside process. That process might choose so
as to help or hinder us, or it might be entirely indifferent. To minimize the risk
of performing poorly, it is reasonable to think in adversarial terms; we select
the policy which will perform as well as possible assuming that the adversary
chooses so that we perform as poorly as possible.

These choices correspond to optimistic and pessimistic optimal policies. We
have discussed in the last section how to compute interval value functions for
such policies—such value functions can then be used in a straightforward manner
to extract policies which achieve those values.

There are other possible choices, corresponding in general to other means of
totally ordering real closed intervals. We might for instance consider a policy
whose average performance over all MDPs in the family is as good as or better
than the average performance of any other policy. This notion of average is
potentially problematic, however, as it essentially assumes a uniform prior over
exact MDPs and, as stated earlier, the bounds do not imply any particular prior.

Sensitivity analysis There are other ways in which bounded parameter MDPs
might be useful in planning under uncertainty. For example, we might assume
that we begin with a particular exact MDP, say, the MDP with parameters whose
values reflect the best guess according to a given domain expert. If we were to
compute the optimal policy for this exact MDP, we might wonder about the
degree to which this policy is sensitive to the numbers supplied by the expert.

To explore this possible sensitivity to the parameters, we might assess the
policy by perturbing the parameters and evaluating the policy with respect to
the perturbed MDP. Alternatively, we could use BMDPs to perform this sort of
sensitivity analysis on a whole family of MDPs by converting the point estimates
for the parameters to confidence intervals and then computing bounds on the
value function for the fixed policy via interval policy evaluation.

Aggregation Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded parameter MDP as individual prim-
itive states, we view each state of the BMDP as representing a set or aggregate
of states of some other, larger MDP.

In this interpretation, states are aggregated together because they behave
approximately the same with respect to possible state transitions. A little more
precisely, suppose that the set of states of the BMDP M corresponds to the set



of blocks {Bi,..., B} such that the {B;} constitutes the partition of another
MDP with a much larger state space.
Now we interpret the bounds as follows; for any two blocks B; and Bj;, let

FB; B, () represent the interval value for the transition from B; to B; on action a

defined as follows: Fp g, () = [minpegl 2 qeB, Fpola), maxpep, 3oep, qu(a)]
Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of
transitions to other blocks even though they may differ widely with regard to
transitions to individual states.

In Dean et al. [1997] we discuss methods for using an implicit representation
of a exact MDP with a large number of states to construct an explicit BMDP
with a possibly much smaller number of states based on an aggregation method.
We then show that policies computed for this BMDP can be extended to the
original large implicitly described MDP. Note that the original implicit MDP
is not even a member of the family of MDPs for the reduced BMDP (it has a
different state space, for instance). Nevertheless, it is a theorem that the policies
and value bounds of the BMDP can be soundly applied in the original MDP
(using the aggregation mapping to connect the state spaces).

7 Related Work and Conclusions

Our definition for bounded parameter MDPs is related to a number of other
ideas appearing in the literature on Markov decision processes; in the follow-
ing, we mention just a few such ideas. First, BMDPs specialize the MDPs with
imprecisely known parameters (MDPIPs) described and analyzed in the op-
erations research literature[White and Eldeib, 1994, White and Eldeib, 1986,
Satia and Lave, 1973]. The more general MDPIPs described in these papers re-
quire more general and expensive algorithms for solution. For example, [White
and Eldeib, 1994] allows an arbitrary linear program to define the bounds on the
transition probabilities (and allows no imprecision in the reward parameters)—
as a result, the solution technique presented appeals to linear programming at
each iteration of the solution algorithm rather than exploit the specific structure
available in a BMDP. [Satia and Lave, 1973] mention the restriction to BMDPs
but give no special algorithms to exploit this restriction. Their general MDPIP
algorithm is very different from our algorithm and involves two nested phases
of policy iteration—the outer phase selecting a traditional policy and the inner
phase selecting a “policy” for “nature”, i.e., a choice of the transition parameters
to minimize or maximize value (depending on whether optimistic or pessimistic
assumptions prevail). Our work, while originally developed independently of the
MDPIP literature, follows similar lines to [Satia and Lave, 1973] in defining
optimistic and pessimistic optimal policies.

Bertsekas and Castafion [1989] use the notion of aggregated Markov chains
and consider grouping together states with approximately the same residuals.
Methods for bounding value functions are frequently used in approximate algo-
rithms for solving MDPs; Lovejoy [1991] describes their use in solving partially



observable MDPs. Puterman [1994] provides an excellent introduction to Markov
decision processes and techniques involving bounding value functions.

Boutilier and Dearden [1994] and Boutilier et al. [1995b] describe methods for
solving implicitly described MDPs and Dean and Givan [1997] reinterpret this
work in terms of computing explicitly described MDPs with aggregate states.

Bounded parameter MDPs allow us to represent uncertainty about or vari-
ation in the parameters of a Markov decision process. Interval value functions
capture the resulting variation in policy values. In this paper, we have defined
both bounded parameter MDP and interval value function, and given algorithms
for computing interval value functions, and selecting and evaluating policies.
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Abstract

In this paper, we introduce the notion of a bounded-parameter Markov decision process (BMDP)
as a generalization of the familiar exact MDP. A bounded-parameter MDP is a set of exact MDPs
specified by giving upper and lower bounds on transition probabilities and rewards (all the MDPs
in the set share the same state and action space). BMDPs form an efficiently solvable special case
of the already known class of MDPs with imprecise parameters (MDPIPs). Bounded-parameter
MDPs can be used to represent variation or uncertainty concerning the parameters of sequential
decision problems in cases where no prior probabilities on the parameter values are available.
Bounded-parameter MDPs can also be used in aggregation schemes to represent the variation in
the transition probabilities for different base states aggregated together in the same aggregate
state.

We introduce interval value functions as a natural extension of traditional value functions. An
interval value function assigns a closed real interval to each state, representing the assertion that
the value of that state falls within that interval. An interval value function can be used to bound
the performance of a policy over the set of exact MDPs associated with a given bounded-param-
eter MDP. We describe an iterative dynamic programming algorithm called interval policy evalu-
ation that computes an interval value function for a given BMDP and specified policy. Interval
policy evaluation on a policy T computes the most restrictive interval value function that is
sound, i.e., that bounds the value function for T in every exact MDP in the set defined by the
bounded-parameter MDP. We define optimistic and pessimistic criteria for optimality, and pro-
vide a variant of value iteration [1] that we call interval value iteration that computes policies for
a BMDP that are optimal with respect to these criteria. We show that each algorithm we present
converges to the desired values in a polynomial number of iterations given a fixed discount fac-
tor.

Keywords: Decision-theoretic planning, Planning under uncertainty, Approximate planning,
Markov decision processes.

1. Introduction

The theory of Markov decision processes (MDPs) [11][14][2][10][1] provides the
semantic foundations for a wide range of problems involving planning under
uncertainty [5][7]. Most work in the planning subarea of artificial intelligence
addresses problems that can be formalized using MDP models — however, it is
often the case that such models are exponentially larger than the original “inten-

sional” problem representation used in AI work. This paper generalizes the theory

of MDPs in a manner that is useful for more compactly representing Al problems
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as MDPs via state-space aggregation, as we discuss below.

In this paper, we introduce a generalization of Markov decision processes
called bounded-parameter Markov decision processes (BMDPs) that allows us to
model uncertainty about the parameters that comprise an MDP. Instead of encod-
ing a parameter such as the probability of making a transition from one state to
another as a single number, we specify a range of possible values for the parameter
as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDPs, i.e., the set
of all MDPs whose parameters fall within the specified ranges. From this perspec-
tive, we may have no justification for committing to a particular MDP in this fam-
ily, and wish to analyze the consequences of this lack of commitment. Another
interpretation for a BMDP is that the states of the BMDP actually represent sets
(aggregates) of more primitive states that we choose to group together. The inter-
vals here represent the ranges of the parameters over the primitive states belonging
to the aggregates. While any policy on the original (primitive) states induces a sta-
tionary distribution over those states that can be used to give prior probabilities to
the different transition probabilities in the intervals, we may be unable to compute
these prior probabilities — the original reason for aggregating the states is typi-
cally to avoid such expensive computation over the original large state space.

Aggregation of states in very large state spaces was our original motivation for
developing BMDPs. Substantial effort has been devoted in recent years within the
Al community [9][6][8] to the problem of representing and reasoning with MDP
problems where the state space is not explicitly listed but rather implicitly speci-
fied with a factored representation. In such problems, an explicit listing of the pos-
sible system states is exponentially longer than the more natural implicit problem
description, and such an explicit list is often intractable to work with. Most plan-
ning problems of interest to Al researchers fit this description in that they are only
representable in reasonable space using implicit representations. Recent work in
applying MDPs to such problems (e.g., [9], [6], and [8]) has considered state-space
aggregation techniques as a means of dealing with this problem: rather than work
with the possible system states explicitly, aggregation techniques work with blocks
of similar or identically-behaving states. When aggregating states that have similar
but not identical behavior, the question immediately arises of what transition prob-
ability holds between the aggregates: this probability will depend on which under-
lying state is in control, but this choice of underlying state is not modelled in the
aggregate model. This work can be viewed as providing a means of addressing this
problem by allowing intervals rather than point values for the aggregate transition
probabilities: the interval can be chosen to include the true value for each of the
underlying states present in the aggregates involved. It should be noted that under
these circumstances, deriving a prior probability distribution over the true parame-
ter values is often as expensive as simply avoiding the aggregation altogether and
would defeat the purpose entirely. Moreover, assuming any particular probability
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distribution could produce arbitrarily inaccurate results. As a result, this work con-
siders parameters falling into intervals with no prior probability distribution speci-
fied over the possible parameter values in the intervals, and seeks to put bounds on
how badly or how well particular plans will perform in such a context, as well as to
provide means to find optimal plans under optimistic or pessimistic assumptions
about the true distribution over parameter values. In Section 6, we discuss the
application of our BMDP approach to state-space aggregation problems more for-
mally. Also, in a related paper, we have shown how BMDPs can be used as part of
an state-space aggregation strategy for efficiently approximating the solution of
MDPs with very large state spaces and dynamics compactly encoded in a factored
(or implicit) representation [10].

We also discuss later in this paper the potential use of BMDP methods to eval-
uate the sensitivity of the optimal policy in an exact MDP to small variations in the
parameter values defining the MDP — using BMDP policy selection algorithms on
a BMDP whose parameter intervals represent small variations (perhaps confidence
intervals) around the exact MDP parameter values, the best and worst variation in
policy value achieved can be measured.

In this paper we introduce and discuss BMDPs, the BMDP analog of value
functions, called interval value functions, and policy selection and evaluation
methods for BMDPs. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, called interval
policy evaluation and interval value iteration (IVI) respectively. We define the
desired output values for these algorithms and prove that the algorithms converge
to these desired values in polynomial time, for a fixed discount factor. Finally, we
consider two different notions of optimal policy for a BMDP, and show how IVI
can be applied to extract the optimal policy for each notion. The first notion of
optimality states that the desired policy must perform better than any other under
the assumption that an adversary selects the model parameters. The second notion
requires the best possible performance when a friendly choice of model parameters
is assumed.

Our interval policy evaluation and interval value iteration algorithms rely on
iterative convergence to the desired values, and are generalizations of the standard
MDP algorithms successive approximation and value iteration, respectively. We
believe it is also possible to design an interval-valued variant of the standard MDP
algorithm policy iteration, but we have not done so at this writing — however, it
should be clear that our successive approximation algorithm for evaluating policies
in the BMDP setting provides an essential basic building block for constructing a
policy iteration method; all that need be added is a means for selecting a new
action at each state based on the interval value function of the preceding policy
(and a possibly difficult corresponding analysis of the properties of the algorithm).
We note that there is no consensus in the decision-theoretic planning and learning
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and operations-research communities as to whether value iteration, policy itera-
tion, or even standard linear programming is generally the best approach to solving
MDP problems: each technique appears to have its strengths and weaknesses.

BMDPs are an efficiently solvable specialization of the already known class of
Markov Decision Processes with Imprecisely Known Transition Probabilities
(MDPIPs) [15][17][18]. In the related work section we discuss in more detail how
BMDPs relate to MDPIPs.

Here is a high-level overview of how conceptual, theoretical, algorithmic, and
experimental treatments are woven together in the remainder of the paper. We
begin by introducing the concept of a Bounded Parameter MDP (BMDP), and
introducing and justifying BMDP analogues for optimal policies and value func-
tions. In terms of the theoretical development, we define the basic mathematical
objects, introduce notational conventions, and provide some background in MDPs.
We define the objects and operations that will be useful in the subsequent theoreti-
cal and algorithmic development, e.g., composition operators on MDPs and on
policies. Finally, we define and motivate the relevant notions of optimality, and
then prove the existence of optimal policies with respect to the different notions of
optimality.

In addition to this theoretical and conceptual development, in terms of algo-
rithm development we describe and provide pseudo-code for algorithms for com-
puting optimal policies and value functions with respect to the different notions of
optimality, e.g., interval policy evaluation and interval value iteration. We provide
an analysis of the complexity of these algorithms and prove that they compute
optimal policies as defined earlier. We then describe a proof-of-concept imple-
mentation and summarize preliminary experimental results. We also provide a
brief overview of some applications including sensitivity analysis, coping with
parameters known to be imprecise, and support for state aggregation methods.
Finally, we survey some additional related work not covered in the primary text
and summarize our contributions.

Before introducing BMDPs and their algorithms in Section 4 and Section 5, we
first present in the next two sections a brief review of exact MDPs, policy evalua-
tion, and value iteration in order to establish notational conventions we use
throughout the paper. Our presentation follows that of [14], where a more com-
plete account may be found.

2. Exact Markov Decision Processes

An (exact) Markov decision process M is a four tuple M = (Q, A, F, R) where
Q is a set of states, A is a set of actions, R is a reward function that maps each
state to a real value R(q) 1 and F is a state-transition distribution so that for o € A

and p,ge Q
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F,,(@) = Pr(X,,,=q | X,=p, U;=0)) (1)

where X, and U, are random variables denoting, respectively, the state and action
at time 7. When needed we write FM to denote the transition function of the MDP
M.

A policy is a mapping from states to actions, T:Q — A. The set of all policies
is denoted IT. An MDP M together with a fixed policy m € Il determines a
Markov chain such that the probability of making a transition from p to g is
defined by F (n(p)) . The expected value function (or simply the value function)
associated w1t?) such a Markov chain is denoted V), .. The value function maps
each state to its expected discounted cumulative reward defined by

Vi o(P) = R(p) +Y Y, Fp @)V, n(9) 2)
qge Q

where 0 £y <1 is called the discount rate.2 Tn most contexts, the relevant MDP is
clear and we abbreviate V,, , as V.

The optimal value function Vj, (or simply V* where the relevant MDP is
clear) is defined as follows.

V') = max (RG)+1 T, Fp@V'@) 3)

aeA qEQ

The value function V* is greater than or equal to any value function V_ in the par-
tial order 2, defined as follows: V24, V, if and only if for all states g,

V1(g) 2 V(g) (in this case we say that V; dominates V,). We write V{ >4n V;
to mean V; 24, V, and for at least one state g, V(g) > V,(q).

An optimal policy is any policy n* for which V* = V .. Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the max in the definition of V* with argmax .

3. Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
We follow the example of [14]. In Section 5, we describe novel algorithms for

1. The techniques and results in this paper easily generalize to more general reward functions. We
adopt a less general formulation to simplify the presentation.

2. In this paper, we focus on expected discounted cumulative reward as a performance criterion,
but other criteria, e.g., total or average reward [14], are also applicable to bounded-parameter
MDPs.
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computing the interval analogs of these value functions for bounded-parameter
MDPs.

We present results from the theory of exact MDPs that rely on the concept of
normed linear spaces. We define operators, VI, and VI, on the space of value
functions. We then use the Banach fixed-point theorem (Theorem 1) to show that
iterating these operators converges to unique fixed-points, V, and V" respectively
(Theorem 3 and Theorem 4).

Let V denote the set of value functions on Q. For each ve V , define the
(sup) norm of v by

vl = max [v(g)|. 4

q9€ Q
We use the term convergence to mean convergence in the norm sense. The space
V together with || - || constitute a complete normed linear space, or Banach Space.

If U is a Banach space, then an operator T:U — U is a contraction mapping if
there exists a A, 0 <A <1 such that |Tv - Tul| <Allv-u| forall u and v in U.

Define VI:V— V andforeach me I1, VI:V— V oneach p& Q by

VIG)p) = max (R@)+1 T, Fyfe)v(@). and )
oeEA ge Q
VL ()(p) = R(p)+Y Y, Fp m(p)v(a) - (6)
ge @

In cases where we need to make explicit the MDP from which the transition func-
tion F originates, we write VI, , and VI, to denote the operators VI and VI
just defined, except that the transition function F is F° M  More generally, we write
VI :V—V and VI ,:V— V to denote operators defined on each pe Q as:

VIy 20)p) = R(P)+7 Y, Fp(p)v(g)

qe Q
@)
VIy «0(P) = R(p)+7 Y, Fro(av(g)
ge Q
Using these operators, we can rewrite the definition for V* and V, as
V¥p) = VIIV*)(p) and V, (p) = VI(V)(p) ®

for all states p € Q . This implies that V* and V_ are fixed points of VI and VI,
respectively. The following four theorems show that for each operator, iterating the
operator on an initial value estimate converges to these fixed points. Proofs for
these theorems can be found in the work of Puterman [14].

Bounded-parameter Markov Decision Processes, June 16, 2000 6



Theorem 1: For any Banach space U and contraction mapping T:U — U,
there exists a unique v* in U such that Tv* = v*; and for arbitrary v0 in U,
the sequence {v"} defined by v = Tv"~1 = T7v0 converges to v™.

Theorem 2: VI and VI, are contraction mappings.

Theorem 1 and Theorem 2 together prove the following fundamental results in the
theory of MDPs.

Theorem 3: There exists a unique v*€ V satisfying v* = VI(v"); further-
more, v* = V*. Similarly V_ is the unique fixed-point of VI, .

Theorem 4: For arbitrary v0 e V, the sequence {v"} defined by v* =
VIv"-1) = VI*"(v0) converges to V*. Similarly, iterating VI converges to
V,.

An important consequence of Theorem 4 is that it provides an algorithm for find-
ing V* and V, . In particular, to find V* we can start from an arbitrary initial value
function v0 in V, and repeatedly apply the operator VI to obtain the sequence
{v"}. This algorithm is referred to as value iteration. Theorem 4 guarantees the
convergence of value iteration to the optimal value function. Similarly, we can
specify an algorithm called policy evaluation that finds V. by repeatedly applying
VI starting with an initial v € V.

The following theorem from [12] states a convergence rate of value iteration
and policy evaluation that can be derived using bounds on the precision needed to
represent solutions to a linear program of limited precision (each algorithm can be
viewed somewhat nontrivially as solving a linear program).

Theorem 5: For fixed y, value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP
parameters.

Another important theorem that is used extensively in the proofs of the suc-
ceeding sections results directly from the monotonicity of the VI, operator with
respect to the <., and 24, orderings, together with the above theorems.

Theorem 6: Let me IT be a policy and M an MDP. Suppose there exists
ue V for which u g (2aom) VI (1), then u Suom (24om) Vg, - Likewise
for the orderings <y, and >4

4. Bounded-parameter Markov Decision Processes

A bounded-parameter MDP(BMDP) is a four tuple M, = (Q, A, F;, R;) where
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Figure 1: The state-transition diagram for a simple bounded-parameter Markov
decision process with three states and a single action. The arcs indicate possible
transitions and are labeled by their lower and upper bounds.

Q and A are defined as for MDPs, and F; and R; are analogous to the MDP F
and R but yield closed real intervals instead of real values. That is, for any action
o and states p, g, Ri(p) and F;, ,(c) are both closed real intervals of the form
{1, u] for real numbers [ and u with I <u, where in the case of F; we require
0<1<u<1.3Toensure that F; admits only well-formed transition functions, we
require that for any action o and state p, the sum of the lower bounds of F; , ,(o)
over all states ¢ must be less than or equal to 1 while the upper bounds must sum
to a value greater than or equal to 1. Figure 1 depicts the state-transition diagram
for a simple BMDP with three states and one action. We use a one-action BMDP to
illustrate various concepts in this paper because multi-action systems are awkward
to draw, and one action suffices to illustrate the concepts. Note that a one action
BMDP or MDP has only one policy available (select the only action at all states),
and so represents a trivial control problem.

ABMDP M, = (Q,A, F, R;) defines a set of exact MDPs that, by abuse of
notation, we also call M; . For any exact MDP M = (Q’,A’, F/,R’), we have
MeM, if Q = Q’, A = A’, and for any action o and states p, g, R’(p) isin
the interval R;(p) and F’ P, (o) is in the interval F; , 4(0). We rely on context to
distinguish between the tupfe view of M; and the set of exact MDPs view of M, .
In the remaining definitions in this section, the BMDP M; is implicit. Figure 3
shows an example of an exact MDP belonging to the family described by the
BMDP in Figure 1. We use the convention that thick wavy lines represent interval
valued transition probabilities and thinner straight lines represent exact transition
probabilities.

3. To simplify the remainder of the paper, we assume that the reward bounds are always tight, i.e.,
that for all g€ Q , for some real I, R:(g) = [I,1], and we refer to I as R(g) . The generalization
of our results to nontrivial bounds on rewards is straightforward.

Bounded-parameter Markov Decision Processes, June 16, 2000 8



An interval value function V, is a mapping from states to closed real inter-
vals. We generally use such functions to indicate that the value of a given state falls
within the selected interval. Interval value functions can be specified for both exact
MDPs and BMDPs. As in the case of (exact) value functions, interval value func-
tions are specified with respect to a fixed policy. Note that in the case of BMDPs a
state can have a range of values depending on how the transition and reward
parameters are instantiated, hence the need for an interval value function.

For each interval valued function (e.g., F;, Ry, V; , and those we define later)
we define two real valued functions that take the same arguments and return the
upper and lower interval bounds, respectively, denoted by the following syntactic
variations: Fy, Ry, V4 for upper bounds, and Fi, Ry, V| for lower bounds, respec-
tively. So, for example, at any state g we have Vi(q) = [Vi(q), V1(q)] .

We note that the number of MDPs M € M, is in general uncountable. We start
our analysis by showing that there is a finite subset X,, € M; of these MDPs of
particular interest. Given any ordering O of all the states in O, there is a unique
MDP M € M, that minimizes, for every state ¢ and action o, the expected “posi-
tion in the ordering” of the state reached by taking action o in state g — in other
words, an MDP that for every state g and action ¢ sends as much probability mass
as possible to states early in the ordering O when taking action o in state g. For-
mally, we define the following concept:

Definition 1. Let O = q,,9,, ..., q; be an ordering of Q. We define the
order-maximizing MDP M ,, with respect to ordering O as follows.

Let r be the index 1<r<k that maximizes the following expression without
letting it exceed 1:

r-1 k

D F 1p,q{0) + > F Lp,q(®)- ®)

i=1 i=r

The value r is the index into the state ordering {g;} such that below index r
we assign the upper bound, and above index r we assign the lower bound, with
the rest of the probability mass from p under o being assigned to g, . Formally,
we select M , € M; by choosing F 2{ g(oc) for all g € Q as follows:

Fpo©) = and
’ Fipqi(oc) if j>r
i=k
Fgqu(oc) =1- Fglqg(a)
i=1i#r




Figure 2: An illustration of the transition probabilities in the order-maximizing
MDP at the state p for the order shown. The lighter shaded portions of each arc
represent the required lower bound transition probability and the darker shaded
portions represent the fraction of the remaining allowed transition probability
assigned to the arc by T'.

——0.89
07 Reward =9
0.11
Reward =1 -
0.1
0.9
0.3 Reward = 10

Figure 3: The order-maximizing MDP for the BMDP shown in Figure 1 using
the state order 2 >3 > 1.

Figure 2 shows a diagrammatic representation of the order-maximizing MDP at a
particular state p for the particular ordering of the state space shown. Figure 3
shows the order-maximizing MDP for the particular BMDP shown in Figure 1
using a particular state order (2 > 3 > 1), as a concrete example.

Bounded-parameter Markov Decision Processes, June 16, 2000 10



Definition 2. Let X,, be the set of order-maximizing MDPs M, in M, , one
for each ordering O . Note that since there are finitely many orderings of states,
Xy, is finite.

We now show that the set X,, in some sense contains every MDP of interest from
M, . In particular, we show that for any policy 7 and any MDP M in M; , the value
of T in M is bracketed by values of 7 in two MDPs in X, .

Lemma 1: Forany MDP M € M,,

(a) tl;or any policy © € I, there are MDPs M, € X), and M, < X;, such
at

VMI, n Sdom VM,n Sdom VMZ, T-° (10)

(b) Also, for any value function v € V, there are MDPs M 3 € X, and
1
M, € X, such that

Vi M n(v) —dom Vi M, n(V) ~dom Vi M & n(v) . (1 1)

Proof: See Appendix.

Interval Value Functions for Policies. We now define the interval analogue to the
traditional MDP policy-specific value function V, and state and prove some of
the properties of this interval value function. The development here requires some
care, as one desired property of the definition is not immediate. We first observe
that we would like an interval-valued function over the state space that satisfies a
Bellman equation like that for traditional MDPs (as given by Equation 2). Unfortu-
nately, stating a Bellman equation requires us to have specific transition probabil-
ity distributions F rather than a range of such distributions. Instead of defining
policy value via a Bellman equation, we define the interval value function directly,
at each state, as giving the range of values that could be attained at that state for the
various choices of F allowed by the BMDP. We then show that the desired mini-
mum and maximum values can be achieved independent of the state, so that the
upper and lower bound value functions are just the values of the policy in particu-
lar “minimizing” and “maximizing” MDPs in the BMDP. This fact enables the use
of the Bellman equations for the minimizing and maximizing MDPs to give an
iterative algorithm that converges to the desired values, as presented in Section 5

Definition 3. For any policy 7 and state g, we define the interval value V; ,(q)
of m at q to be the interval
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= | min V, .(q), max V,, .(q)
Vin(d) [MEM; M.m MeM, M ] (12)

We note that the existence of these minimum and maximum values follows
from Lemma 1 and the finiteness of the set X, — because Lemma 1 implies
that V; (q) is the same as the following where the minimization and maximiza-
tion are done over finite sets:

- | min V,, .(q), max V,, .(q)
V@) [Mex,,: w0 X Vi | (13)

In preparation for the discussion in Section 5, we show in Theorem 7 that for any
policy there is at least one specific policy-maximizing MDP in M; that achieves the
upper bound in Definition 3 at all states g simultaneously (and likewise a different
specific policy-minimizing MDP that achieves the lower bound at all states g
simultaneously). We formally define these terms below.

Definition 4. For any policy ©, an MDP M € M; is n-maximizing if Vs n
dominates V. , for any M'eM,,ie, forany M"€ M;, Vy 1 240m VM,
Likewise, M € MI is 7 -minimizing if it is dominated by all such Vp: o L€,
forany M" € My, Vi 1 Suom Viy' -

Figure 4 shows the interval value function for the only policy available in the (triv-
ial) one-action BMDP shown in Figure 1, along with the T-maximizing and ©-min-
imizing MDPs for that policy.

We note that Lemma 1 implies that for any single state g and any policy T we can
select an MDP M € M; to maximize (or minimize) VM () by selecting the
MDP in X M, that gives the largest value for 7 at g. However, we have not shown
that a smgle MDP can be chosen to simultaneously maximize (or minimize)
VM () at all states g€ Q (i.e, that there exist 7 -maximizing and T -minimiz-
ing MDPs). In order to show this fact, we show how to compose two MDPs (with
respect to a fixed policy 1) to construct a third MDP such that the value of 7 in the
third MDP is not less than the value of 7t in either of the initial two MDPs, at every
state. We can then construct a t-maximizing MDP by composing together all the
MDPs that maximize the value of 7 at the different individual states (likewise for
7 -minimizing MDPs using a similar composition operator). We start by defining
the just mentioned policy-relative composition operators on MDPs:

Definition 5. Let @7 and @[, denote composition operators on MDPs with
respect to a policy 7 € II, defined as follows:

Bounded-parameter Markov Decision Processes, June 16, 2000 12



V; = [80.1,85.2]

Reward=9

1 _-[0.89, 1.0]
el
(07,081 F%5

Vi = [66.8,76.7] e

[0.1,0.15]
[0.0,0.1]

Reward = 10
V; = [70.1,79.8]

V = 66.8 \

Reward = 1.

Reward = 10 Reward = 10
V =701 V =798

—minimizing MDP

m-maximizing MDP

Figure 4: The interval value function (shown as V; on the top subfigure),
policy-minimizing MDP with state values (lower left), and policy-maximizing
MBDP with state values (lower right) for the one-action BMDP shown in Figure 1
under the only policy. We assume a discount factor of 0.9. Note that the lower-
bound values in the interval value function are the state values under the policy-
minimizing MDP, and the upper-bound values are the state values under the

policy-maximizing MDP. Also, note that the policy-maximizing MDP is the
order-maximizing MDP for the state order 3>2>1 and the policy-minimizing
MDP is the order-maximizing MDP for the order 1>2>3—policy-minimizing
and maximizing MDPs are always order-maximizing for some order (but the

orders need not be reverse to one another as they are in this example).
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V =767 \

Reward = 1

0.25

Reward = 10 Reward = 10 Reward = 10
V=794 V=793 V = 79.8
n
MDP M, MDP M, M, @ M,

Figure 5: Two MDPs M; and M, from the BMDP shown in Figure 1, and their
composition under @X,  where T is the only available policy in the one-action
BMDP. State transition probabilities for the composition MDP are selected from
the component MDP that achieves the greater value for the source state of the
transition. State values are shown for all three MDPs — note that the
composition MDP achieves higher value at every state, as claimed in Lemma 2.

IfM,,M,€ M, then My = M@, M, if forall states p,g€ Q,
M . i

FMy(0) = | Fpi@) if Vy o(p)2Vy, 1(p) and o=m(p)

" F g{lz(a) otherwise

If M ,M,e M, ,then My = M, ®; M, if for all states p,g € Q,

FMy(q) = | Fii@)  if Vi n(p) SV, o(p) and a=m(p)
pqg M =

F 24‘]2(00 otherwise

\

We give as an example in Figure 5 two MDPs from the BMDP of Figure 1, along

with their composition under the @%,  operator where T is the single available

policy for that one-action BMDP. We now state the property claimed above for this
MDP composition operator:
Lemma 2: Let 7 be a policy in IT and M, M, be MDPs in M; .
(@ForM, = M, ®L,, M,,

Vi, 7 2am Vg, n 804 Vig 7 Zeom Vi, g - and (14)
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Vi, 1 Sdom VM, = and VM3,1|: Sdom VMz,“ . (15)

Proof: See Appendix.

These MDP composition operators can now be used to show the existence of pol-
icy-maximizing and policy-minimizing MDPs within M; .

Theorem 7: For any policy T € I, there exist 7 -maximizing and 7 -minimiz-
ing MDPs in XM: cM.

Proof: Enumerate X, as a finite sequence of MDPs M, .. ., M. Consider
composing these MDPs together to construct the MDP M as follows

M= (M, ®, M,) ®L, ...) ®%, M) (16)

Note that M may depend on the ordering of M, ..., M, but that any ordering
is satisfactory for this proof. It is straightforward to show by induction using
Lemma 2 that Vi 7 24 V5 for each 1<i<k, and then Lemma 1 implies
that Vi 7 24om VM x for any M’€ M;. M is thus a 7-maximizing MDP.
Although M may not be in X M, Lemma 1 implies that V,, . must be domi-
nated by V. , for some MeXx M, > which must also be 7 -maximizing.

An identical proof implies the existence of 7-minimizing MDPs, replacing
each occurrence of “max” with “min” and each 24, with <., .

Corollary 1: Vi, = miny, ¢ 5 (V) ) and Vo = maxM e m,(Vy,n) Where the
minimum and maximum are computed relative to <4, and are well-defined by
Theorem 7.

We give an algorithm in Section 5 that converges to Vi, by also converging to a
7 -minimizing MDP in M, (similarly for V3., exchanging 7 -maximizing for 7-
minimizing).

Optimal Value Functions in BMDPs. We now consider how to define an optimal
value function for a BMDP. First, consider the expression max, . (Vi) . This
expression is ill-formed because we have not deﬁned how to rank the interval value
functions V;, in order to select a maximum. 4 We focus here on two different
ways to order these value functions, yielding two notions of optimal value function
and optimal policy. Other orderings may also yield interesting results.

First, we define two different orderings on closed real intervals:

4. Similar issues arise if we attempt to define the optimal value function using a Bellman style
equation such as Equation 3 because we must compute a maximization over a set of intervals.
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(L3 1] e [y up]y e (1, <y O (I =1y Aty S uy))
(17)

We extend these orderings to partial orders over interval value functions by relat-
ing two value functions V;; <, Vi, only when V;,(q) <, V;,(q) for every state
g . We can now use either of these orderings to compute max, . (V) , yielding
two definitions of optimal value function and optimal policy. However, since the
orderings are partial (on value functions), we prove first (Theorem 8) that the set of
policies contains a policy that achieves the desired maximum under each ordering
(i.e., a policy whose interval value function is ordered above that of every other

policy).

Definition 6. An optimistically optimal policy m,, is any policy such that
V}n Zopt Vi forall pohcles 7. A pessimistically optimal policy T is any pol-
icy such that Vin ., Zpes Vin for all policies 7.

In Theorem 8, we prove that there exist optimistically optimal policies by
induction (an analogous proof holds for pessimistically optimal policies). We
develop this proof in two stages, mirroring the two-stage definition of 2., (first
emphasizing the upper bound and then breaking ties with the lower bound). We
first construct a policy mt” for which the upper bounds of the interval value function
Vi, dominate those V3.~ of any other policy n”. We then show that the finite set
of such policies (all tied on upper bounds) can be combined to construct a policy
T, With the same upper bound values VTn and whose lower bounds V~L1r domi-
nate those of any other policy. Each of these constructions relies on the followmg
policy composition operator:

Definition 7. Let ®_; and @ .  denote composition operators on policies,
defined as follows. Consider policies 1, 7, € II,

Let m; = m; @, T, if for all states p€ QO

ny(p)  if Vig (P) 2 Vin (P)
m3(p) = { (18)

ny(p)  otherwise

opt

Let 3 = T, @ T, if for all states p€ Q:

Ty(p)  if Vig (D) Zpes Vi (P)
ni3(p) = { . (19)

n,(p)  otherwise
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Our task would be relatively easy if it were necessarily true that
Vi (n; &, ;) —>'opt Vinl and VY (1) B T2) Zopt Vi'nz . (20)

(and likewise for the pessimistic case). However, because of the lexicographic
nature of 2, , these statements do not hold (in particular, the lower bound values
for some states may be worse in the composed policy than in either component
even when the upper bounds on those states do not change). For this reason, we
prove a somewhat weaker result that must be used in a two-stage fashion as dem-
onstrated below:

Leénma 3: Cc}_éven a BMDP M, , and policies 7;, T, € IT, 73 = Ty @ 75,
an TE4 = Rl pes 7'[2,

(a) VTn3 2dc.\m VTnl and VTn3 ->-dom VTn2

®) If Vip =Vay then Vi 2o, Vip and Vip 2o Vig,
©) V¢n4 Ziom V,L,tl and V¢n4 Ziom V¢n2

@If Vi =Vig, then Vi 2 Vig, and Vi, Zpes Vin, -

Proof: See Appendix.

Theorem 8: There exists at least one optimistically (pessimistically) optimal
policy.

Proof: Enumerate IT as a finite sequence of policies 7y, ..., ;. Consider
composing these policies together to construct the policy T,y ., as follows:

Topt, up = (((m,y EBOm ,) @opt er) G-)opt ) (21)

Note that 7, ., may depend on the ordering of 7y, ..., 7, but that any order-
ing is satisfactory for this proof. It is straightforward to show by induction using
Lemma 3 that Vs, 24, V1, foreach 1 <i<k.Now enumerate the subset of
TI for which the valte function upper bounds equal those of Topt, up * i.e., enu-
merate {n"| V4, =Vr, } as {n,...,m,}. Consider again composing the
policies ;" together as ‘above to form the policy T, :

Topt = (((my’ Dopt n,’) Dopt ) Ogpt ;) (22)

It is again straightforward to show using Lemma 3 that Vig  Zom Vig: for each
1<i<l. It follows immediately that Vip 2, Vig for every me II, as
desired. A similar construction using @ yiepds a pessimistically optimal pol-
icy M.

Theorem 8 justifies the following definition:
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Definition 8. The optimistic optimal value function V;,, and the pessimistic
optimal value function V; ., are given by:

View = max, c p(Vi,) using <, to order interval value functions

Vips = max, . (Vi) using <, to order interval value functions

The above two notions of optimal value can be understood in terms of a two player
game in which the first player chooses a policy T and then the second player
chooses the MDP M in M; in which to evaluate the policy t (see Shapley’s work
[16] for the origins of this viewpoint). The goal for the first player 1s to get the
highest5 resulting value function V,, .. The upper bounds V3, of the optimisti-
cally optimal value function represen’t the best value function the first player can
obtain in this game if the second player cooperates by selecting an MDP to maxi-
mize V), . (the lower bound Vi, corresponds to how badly this optimistic strat-
egy for the first player can misfire if the second player betrays the first player and
selects an MDP to minimize V, ). The lower bounds Vi, of the pessimistically
optimal value function represent the best the first player can do under the assump-
tion that the second player is an adversary, trying to minimize the resulting value
function.

We conclude this section by stating a Bellman equation theorem for the opti-
mal interval value functions just defined. The equations below form the basis for
our iterative algorithm for computing the optimal interval value functions for a
BMDP. We start by stating two definitions that are useful in proving the Bellman
theorem as well as in later sections. It is useful to have notation to denote the set of
actions that maximize the upper bound at each state. For a given value function V,
we write p,, for the function from states to sets of actions such that for each state

P

py(p) = argmax max VI, (V)p). (23)
aeA MeM,

Likewise, for the pessimistic case, we define o, for the function from states to
sets of actions giving the actions that maximize the Jower bound. For each state p,

oy(p) is given by

oy(p) = argmax min VI (VXP). (24)
xeEA MeM,

Theorem 9: For any BMDP M; , the following Bellman-like equations hold at
every state p,

5. Value functions are ranked by 24,-
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Viw(p) = max | min Vi o(Viep)(p), max VIy, V@], 25)
AEA Sy “Me M, MeM,

and

Vi(p) = max | min Vi o(Vipe)(p), max Vi, oVi)(P)]-  (26)
a€cA, S, Me M, MeM,

Proof: See Appendix.

5. Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms that operate on
bounded-parameter MDPs. We first define the interval equivalent of policy evalua-
tion IVI;, which computes V;,, and then define the variants IVI; o, and IV .
which compute the optimistic and pessimistic optimal value functions.

5.1 Interval Policy Evaluation

In direct analogy to the exact MDP definition of VI in Section 3, we define a
function IV1, . (for interval value iteration) which maps interval value functions to
other interval value functions. We prove that iterating IVI; on any initial interval
value function produces a sequence of interval value functions that converges to
V; . in a polynomial number of steps, given a fixed discount factor y.

VI, (V;) is an interval value function, defined for each state p as follows:

IVL (Vi)(p) = [Em}, Vi, o{ViXp), aX VI VE)] @7)

We define IVIy, and IVIr, to be the corresponding mappings from value functions
to value functions (note that for input V; , IVl does not depend on V3 and so can
be viewed as a function from V to V — likewise for IVIy, and V}).

The algorithm to compute IV, is very similar to the standard MDP computa-
tion of VI, except that we must now be able to select an MDP M from the family
M, that minimizes (maximizes) the value attained. We select such an MDP by
selecting a transition probability function F within the bounds specified by the F;
component of M; to minimize (maximize) the value — each possible way of
selecting F corresponds to one MDP in M; . We can select the values of F ()
independently for each o and p, but the values selected for different states g (for
fixed o and p) interact: they must sum up to one. We now show how to determine,
for fixed o and p, the value of F, (o) for each state g so as to minimize (maxi-
mize) the expression qu oF pq((’xts V(q)). This step constitutes the heart of the
VI, algorithm and the only significant way the algorithm differs from standard
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VTﬂ(qk)

Figure 6: An illustration of the basic dynamic programming step in
computing an approximate value function for a fixed policy and bounded-
parameter MDP. V;_ gives the upper bounds of the current interval estimates
of V_. The lighter shaded portions of each arc represent the required lower
bound transition probability and the darker shaded portions represent the
fraction of the remaining transition probability to the upper bound assigned to
the arc by F'.

policy evaluation by successive approximation by iterating VI,, ...

To compute the lower bounds IVI,, the idea is to sort the possible destination
states g into increasing order according to their Vi value, and then choose the
transition probabilities within the intervals specified by F; so as to send as much
probability mass to the states early in the ordering (upper bounds are computed
similarly, but sorting the states into decreasing order by their V; value). Let
O = 4qy,9,, ...,q;, be such an ordering of Q — so that for all i and j if
1<i<j<k then Vi(g) £ Vi(g j) (increasing order). We can then show that the
order-maximizing MDP M, is the MDP that minimizes the desired expression
Zq e o(F z" () V(q)) . The order-maximizing MDP for the decreasing order based

on V; wﬁl maximize the same expression to generate the upper bound in
Equation 27.

Figure 6 illustrates the basic iterative step in the above algorithm, for the upper
bound, i.e. maximizing, case. The states g; are ordered according to the value esti-
mates in V3. The transitions from a state p to states g; are defined by the function
F such that each transition is equal to its lower bound plus some fraction of the
leftover probability mass. For a more precise account of the algorithm, please refer
to Figure 7 for a pseudocode description of the computation of IVI; . (V;).

Techniques similar to those in Section 3 can be used to prove that iterating
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vLV;, m)

\\we assume that V, is represented as:
\ Vi is a vector of n real numbers giving lower-bounds for states q; to g,
\\ V4 is a vector of n real numbers giving upper-bounds for states q; to g,

{ Create O, a vector of n states for holding a permutation of the states g, to g,

\Virst, compute new lower bounds
O = sort_increasing_order(qy,....4,<pp); \\ <jp compares state lower-bounds
Update(V,, &, O);

\second, compute new upper bounds
O = sort_decreasing_order(qy,....q,<up); \\ <up cOmpares state upper-bnds
Update(Vr, T, 0)}

\\ Update(v, T, 0) updates v using the order-maximizing MDP for o
\\ o0 is a state ordering—a vector of states (a permutation of q,....q,)
\ v is a value function—a vector of real numbers of length n
Update(v, m, 0)
{ Create F’, a matrix of n by n real numbers
\\ the next loop sets F’ to describe T in the order-maximizing MDP for o
for each state p {
used= Y Fi, (n(p));
state g
remaining = 1 — used;
\ distribute remaining probability mass to states early in the ordering
fori=lton { \\i is used to index into ordering o
min = Fl P o(i)(TC(P)) ’
desired = Fp P, o(a(n(p)) ;
if (desired <= remaining)
then F’(p,o(i)) = min+desired;
else F’(p,o(i)) = min+remaining;
remaining = max(0,remaining-desired)} }
\ F’ now describes T in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’
for each state p :
vp)=R@)+Y Y, F(pg)v(g) }

state g
Figure 7: Pseudocode for one iteration of interval policy evaluation (IVI; )

IV, (or IVILy;) converges to Vi, (or Vr.). The key theorems, stated below,
assert first that IVIy is a contraction mapping, and second that Vi, is a fixed-
point of IVIy,, and are easily proven.

Theorem 10: For any policy ©, IVl and IVIy, are contraction mappings.
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Proof: See Appendix.

Theorem 11: For any policy ©t, Vi, is a fixed-point of IVI,, and Vi, of
IVl , and therefore V;, is a fixed-point of IVI; .

These theorems, together with Theorem 1 (the Banach fixed-point theorem) imply
that iterating IVI; , on any initial interval value function converges to V; ., regard-
less of the starting point.

Theorem 12: For fixed y<1, interval policy evaluation converges to the
desired interval value function in a number of steps polynomial in the number
of states, the number of actions, and the number of bits used to represent the
BMDP parameters.

Proof: (sketch) We provide only the key ideas behind this proof.

(a) By Theorem 10, IVI,, is a contraction by y on both the upper and lower
bound value functions, and thus the successive estimates of V;, produced
converge exponentially to the unique fixed-point.

(b) By Theorem 11, the unique fixed-point is the desired value function.

(c) The upper bound and lower bound value functions making up the true
V; . are the value functions of 7 in particular MDPs (7 -maximizing and
n-minimizing MDPs, respectively) in X, .

(d) The parameters for the MDPs in X M, can be specified with a number of
bits polynomial in the number of bits used to specify the BMDP parame-
ters.

(e) The value function for a policy in an MDP can be written as the solution
to a linear program. The precision of any such solution can be bounded in
terms of the number of bits used to specify the linear program. This preci-
sion bound allows the definition of a stopping condition for IVI;, when
adequate precision is obtained.

@ (Theorem 12).

5.2 Interval Value Iteration

As in the case of altering VI to obtain VI, it is straightforward to modify IVI;
so that it computes optimal policy value intervals by adding a maximization step
over the different action choices in each state. However, unlike standard value iter-
ation, the quantities being compared in the maximization step are closed real inter-
vals, so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration — other variations
are possible.
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VL (V)(p) = max [mm VI o(VO)(p), max VI, a(%)(p)] (28)
AEA S “MeM, MeM,

WEpoW)p) = max [ min VI o((VO(p), max VI (@) (9)
0EA S "MeM, MeM,

The added maximization step introduces no new difficulties in implementing the
algorithm—for more details we provide pseudocode for IVl in Figure 8. We
discuss convergence for IVl ,,, — the convergence results for [V .. are similar.
We first summarize our approach and then cover the same ground in more detail.

We write IVl for the upper bound returned by IVl , and we consider
VL, afunction from V to V because IV o(V;) depends only on V4 due to the
way <, compares intervals primarily based on their upper bound. IV, can
easily be shown to be a contraction mapping, and it can be shown that V3., is a
fixed point of Iy - It then follows that IVl converges to Viope (and we can
argue as for IVl that this convergence occurs in polynomially many steps for
fixed y). The analogous results for VL, are somewhat more problematic.
Because the action selection is done according to <, , which focuses primarily on
the interval upper bounds, IVIL is not properly a mapping from V to V, as the
action choice for IVhopt(V¢) depends on both V; and V;. In particular, for each
state, the action that maximizes the lower bound is chosen from among the subset
of actions that (equally) maximize the upper bound.

To deal with this complication, we observe that if we fix the upper bound value
function V3, we can view IVIy_, as a function from V to V carrying the lower
bounds of the input value function to the lower bounds of the output. To formalize
this idea, we introduce some new notation. First, given two value functions V| and
V, we define the interval value function [V}, V,] to be the function from states p
to intervals [V;(p), V(p)] (this notation is essentially the inverse of the  and T
notation which extracts lower and upper bound functions from interval functions).
I_Jsing this new notation, we define a family {IVI¢opt’ v} of functions from V to
V, indexed by a value function V. For each value function V, we define
VLo v(V") to be the function from V to V that maps V’ to IVI¢0pt([V’, VD).
(Analogously, we define VIt v(V) tomap V' to IVITpes([V, V’])). We note
that IV, y has the following relationships to IV ., :

IVlt Opt(%) = [IVI'LOP[, VT(V'L)’ IVITopt(VT)]

(30)

w1 lopt(%) = VL, (V)
In analyzing IVl , we also use the notation defined in Section 4 for the set of
actions that maximize the upper bound at each state. We restate the relevant defini-
tion here for convenience. For a given value function V, we write py, for the func-
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i, opt(VI)

\\we assume that V; is represented as:
\ Vi is a vector of n real numbers giving lower-bounds for states q; to g,
\ V; is a vector of n real numbers giving upper-bounds for states q; to g,

{ Create O, a vector of n states for holding a permutation of the states g, to g,,

\\first, compute new lower bounds
O = sort_increasing_order(qy,....g,,<jp); \ <jp compares state lower-bounds
VI-Update(V,, 0);

\\second, compute new upper bounds
O = sort_decreasing_order(qy,....gn,<up); \\ <up cOmpares state upper-bnds
VI-Update(Vr, O0)}

\\ VI-Update(v, 0) updates v using the order-maximizing MDP for o
\ o is a state ordering—a vector of states (a permutation of q;,...,q,)
\ v is avalue function—a vector of real numbers of length n
VI-Update(y, o)
{ Create F,, a matrix of n by n real numbers for each action a
\\ the next loop sets each F, to describe a in the order-maximizing MDP for o
for each state p and action a {
used= Y Fi, (a);
state g
remaining = 1 — used;
\ distribute remaining probability mass to states earlier in ordering
fori=lton { \\i is used to index into ordering o
min = Fip (@)
desired = F; P, o(i)(a) ;
if (desired <= remaining)
then F(p,o(i)) = min+desired;
else F,(p,o(i)) = min+remaining;
remaining = max(0,remaining-desired)} }
\\ F,, now describes a in the order-maximizing MDP w/respect to O,
\\ finally, update v using a value iteration-like update based on F’

for each state p

vp)= max [R@)+y Y, Fupa)va) }]

a€ A state g

Figure 8: Pseudocode: an iteration of optimistic interval value iteration (IVI; ;)

tion from states to sets of actions such that for each state p,

py(p) = argmax max VI, (V)(p) (31
0eEA MeM
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Likewise, for the pessimistic case, we defined oy, in Section 4.

Given the definition of <, it is straightforward to show the following lemma.

Lemma 4: For any value functions V, V” and state p,
VLo, v(V)(p) = max min VI, (V')(p)
aepyp Me M,

IVITpes v(V)(p) = max min VI M, «V)(P)
ae oyp) Me M,

(32)

Proof: By inspection of the definitions of IVI; , and IVL; .
 (Lemma 4).

We now show that for each V, IVhopt’ v i8 a contraction mapping relative to the
sup norm, and thus converges to a unique fixed point, as desired. Theorem 9 then
implies that V; o, is the unique fixed-point found. (V. in the case of IVL; . ). We
then show at that at any point after polynomially many iterations of IVI; ., the
resulting interval value function V; has upper bounds V; that have converged to a
fixed point of IVIr, and thus further iteration of IVI, opt 18 equivalent to iterating
VI, and IVLL oy together in parallel to generate the upper and lower bounds,
respectlvely We can also show that for any V, polynomially many iterations of
VL, v suffice for convergence to a fixed point. Similar results hold for IVZ; .

We now give the details of these results.

Theorem 13:
(@) IVl and IVIL, are contraction mappings.
(b) For any value function V' and associated action set selection function py,

and Oy, IVLL y and IVIy,. y are contraction mappings.

Proof: See Appendix.

Theorem 14: For fixed y, polynomially many iterations of IVI; ., can be used
to find V;,, , and polynomially many iterations of IVI; ., can be used to find
Vi pes » With both polynomials defined relative to the problem size including the
number of bits used in specifying the parameters.

Proof: (sketch)

The argument here is exactly as in Theorem 12, relying on Theorems 9 and 13,
except that the iterations must be taken to convergence in two stages. Consider-
ing IVL; . , we must first iterate until the upper bound has converged, with the
polynomlal-tlme bound on iterations deriving by a similar argument to the
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proof of Theorem 12; then once the upper bounds have converged we must then
iterate until the lower bounds have converged, again in polynomially many iter-
ations by another argument similar to that in the proof of Theorem 12.

More precisely, let Vi, ,V;,,..., be a sequence of interval value functions found
by iterating IVl , so that for each i greater or equal to 1 we have V;;
equal to IVl (V;;) . Then an argument similar to the proof of Theorem 12
guarantees that for some j polynomial in the size of the problem, V; j must have
upper bounds that are equal to the true fixed point upper bound values, up to the
maximum precision of the true fixed point. We then know that truncating the
upper value bounds in V;; to that precision (to get an interval val:e function
V;,") gives the true fixed point upper bound values. We can then iterate IVI;
starting on V;;” to get another sequence of value functions where the upper
bounds are unchanging and the lower bounds are converging to the correct fixed
point values in the same manner.

A similar argument shows polynomial convergence for IVI; . .
Q (Theorem 14).

6. Policy Selection

In this section, we consider the problem of selecting a policy based on the value
bounds computed by our IVI algorithms. This section is not intended as an addi-
tional research contribution as much as a discussion of issues that arise in solving
BMDP problems and of alternative approaches to policy selection (other than the
optimistic and pessimistic approaches we take here). We begin by reemphasizing
some ideas introduced earlier regarding the selection of policies. To begin with, it
is important that we are clear on the status of the bounds in a bounded-parameter
MDP. A bounded-parameter MDP specifies upper and lower bounds on individual
parameters; the assumption is that we have no additional information regarding
individual exact MDPs whose parameters fall with those bounds. In particular, we
have no prior over the exact MDPs in the family of MDPs defined by a bounded-
parameter MDP. We note again that in many applications it is possible to compute
prior probabilities over these parameters, but that these computations are prohibi-
tively expensive in our motivating application (solving large state-space problems
by approximate state-space aggregation).

Despite the fact that a BMDP does not specify which particular MDP we are
facing, we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDP, i.e., the one in which we ultimately have to carry out the pol-
icy, is decided by some outside process. That process might choose so as to help or
hinder us, or it might be entirely indifferent. To maximize potential performance,
we might assume that the outside process cooperates by choosing the MDP in
order to help us; we can then select the policy that performs as well as possible
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given that assumption. In contrast, we might minimize the risk of performing
poorly by thinking in adversarial terms: we can select the policy that performs as
well as possible under the assumption that an adversary chooses the MDP so that
we perform as poorly as possible (in each case we assume that the MDP is chosen
from the BMDP family of MDPs after the policy has been selected in order to min-
imize/maximize the value of that policy).

These choices correspond to optimistic and pessimistic optimal policies as
defined above. We have discussed in the last section how to compute interval value
functions for such policies — such value functions can then be used in a straight-
forward manner to extract policies that achieve those values.

We note that it may seem unnatural to be required to take an optimistic or a
pessimistic approach in order to select a policy — certainly this is not analogous to
policy selection for standard MDPs. This requirement grows out of our model
assumption that we have no prior probabilities on the model parameters, and we
have argued that this assumption is in fact natural at very least in our motivating
domain of approximate state-space aggregation. The same assumption is also natu-
ral in performing sensitivity analysis, as described in the next section. We also note
that there is precedent in the related MDP literature for considering optimistic and
pessimistic approaches to policy selection in the face of uncertainty about the
model; see, for example, the work of Satia and Lave in [15].

Alternative approaches to selecting a policy are possible, but some approaches
that seem natural at first run into trouble. For instance, we might consider placing a
uniform prior probability on each model parameter within its specified interval.
Unfortunately, the model parameters cannot in general be selected independently
(because they must together represent a well-formed probability distribution after
selection), and there may not even be any joint prior distribution over the parame-
ters which marginalizes to the uniform distribution over the provided intervals
when marginalized to each parameter. Therefore, the uniform distribution over the
provided intervals does not enjoy any distinguished status — it may not even cor-
respond to a well-formed prior over the underlying MDPs in the BMDP family.

There are other well-formed choices corresponding to other means of totally
ordering real closed intervals (other than <, and <). For instance, we might
order intervals by their midpoints, asserting a preference for states where the high-
est and lowest value possible in the underlying MDP family have a high mean. It is
not clear when this choice might be prefered; however, we believe our methods can
be naturally adapted to compute optimal policy values for other interval orderings,
if desired.

A natural goal would be to find a policy whose average performance over all
MDPs in the family is as good as or better than the average performance of any
other policy. This notion of average is potentially problematic, however, as it
essentially assumes a uniform prior over exact MDPs and, as stated earlier, the
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bounds do not imply any particular prior. Moreover, it is not at all clear how to find
such a policy — our methods do not appear to generalize in this direction. As
noted just above, this goal does not correspond to assuming a uniform prior over
the model parameters, but rather a more complex joint distribution over the param-
eters. Also, this average case solution would not in general provide useful informa-
tion in our motivating application of state-space aggregation: we would have no
guarantee that the uniform prior over MDP models consistent with the BMDP had
any useful correlation with the original large MDP that aggregated to the BMDP.
In contrast, as discussed below, the optimistic and pessimistic bounds we compute
apply directly to any MDP when the BMDP analyzed is formed by state-space
aggregation of that MDP. Nevertheless, the question of how to compute the opti-
mal average case policy for a BMDP appears to be a useful direction for future
research.

7. Prototype Implementation Results and Potential Applications

In this section we discuss our intended applications for the new BMDP algorithms,
and present empirical results from a prototype implementation of the algorithms
for use in state-space aggregation. We note that no particular difficulties were
encountered in implementing the new BMDP algorithms — implementation is
more demanding than that of standard MDP algorithms, but only by the addition of
a sorting algorithm.

Sensitivity Analysis. One way in which bounded-parameter MDPs might be useful
in planning under uncertainty might begin with a particular exact MDP (say, the
MDP with parameters whose values reflect the best guess according to a given
domain expert). If we were to compute the optimal policy for this exact MDP, we
might wonder about the degree to which this policy is sensitive to the numbers
supplied by the expert.

To assess this possible sensitivity to the parameters, we might perturb the MDP
parameters and evaluate the policy with respect to the perturbed MDP. Alterna-
tively, we could use BMDPs to perform this sort of sensitivity analysis on a whole
family of MDPs by converting the point estimates for the parameters to confidence
intervals and then computing bounds on the value function for the fixed policy via
interval policy evaluation.

Aggregation. Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded-parameter MDP as individual primi-
tive states, we view each state of the BMDP as representing a set or aggregate of
states of some other, larger MDP. We note that this use provides our ori ginal moti-
vation for developing BMDPs, and therefore it is this use that we give prototype
empirical results for below.

In the state-aggregate interpretation of a BMDP, states are aggregated together
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because they behave approximately the same with respect to possible state transi-
tions. A little more precisely, suppose that the set of states of the BMDP M; corre-
sponds to the set of blocks {Bj,...,B,} such that the {B;} constitutes the
partition of another MDP with a much larger state space.

Now we interpret the bounds as follows; for any two blocks B; and B;, I let
F; g (o) represent the interval value for the transition from B; to B; on action o
defined as follows:

Fipp () = [mln > F, (oc), max Y qu(oc)] (33)

PE€ B ge B B, ge B,

Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of transi-
tions to other blocks even though they may differ widely with regard to transitions
to individual states.

In Dean et. al. [10] we discuss methods for using an implicit representation of
a exact MDP with a large number of states to construct an explicit BMDP with a
possibly much smaller number of states based on an aggregation method. We then
show that policies computed for this BMDP can be extended to the original large
implicitly-described MDP. Note that the original implicit MDP is not even a mem-
ber of the family of MDPs for the reduced BMDP (it has a different state space, for
instance). Nevertheless, it is a theorem that the policies and value bounds of the
BMDP can be soundly applied in the original MDP (using the aggregation map-
ping to connect the state spaces). In particular, the lower interval bounds computed
on a given state block by IVIy,.; give lower bounds on the optimal value for states
in that block in the original MDP; likewise, the upper interval bounds computed by
IVl give upper bounds on the optimal value in the original MDP.

Empirical Results. We constructed a prototype implementation of our BMDP
algorithms, interval value iteration and interval policy evaluation. We then used
this implementation in conjunction with implementations of our previously pre-
sented approximate state-space aggregation algorithms [10] in order to compute
lower and upper bounds on the values of individual states in large MDP problems.

The MDP problems used were derived by partially modelling air campaign
planning problems using implicit MDP representations. These problems involve
selecting tasks for a variety of military aircraft over time in order to maximize the
utility of their actions, and require modeling many aspects of the aircraft capabili-
ties, resources, crew, and tasks. Modeling the full problem as an MDP is still out of
reach — the MDP models used in these experiments were constructed by repre-
senting the problem at varying degrees of (extremely coarse) abstraction so that the
resulting problem would be within reach of our prototype implementation.

We show in Table 15 the original problem state-space size, the state-space size
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Table 15: Model Size after Approximate Minimization

Fole| 4States  €=0 €=001 =01 e=03 £=05 =08
9 512 114 114 72 24 11 g
10 | 1024 131 122 85 55 21 21
13 | 8192 347 347 272 148 66 63
14 | 16384 442 153 67 63
15 | 32768 50 152 88 69

IVI Inaccuracy: 0% 0.2% 10% 40% 58% 62%

of the BMDP that results from our aggregation algorithm, and the quality of the
resulting state-value bounds for several different sized MDP problems. Each row
in the table corresponds to a specific explicit MDP that we solved (approximately
and/or exactly) using state-space aggregation. We note that one parameter (€) of
our aggregation method is the degree of approximation tolerated in transition prob-
ability — this corresponds to the interval width in the BMDP parameter intervals.
As this parameter is given larger and larger values across the columns of the table,
the aggregate BMDP model has fewer and fewer states — in return, the value
bounds obtained are less and less tight. The quality of the resulting state-value
bounds is given by showing “IVI Inaccuracy” — this percentage is the average
width of the value intervals computed as a percentage of the difference between
the lowest possible state value and the highest possible state value (these are
defined by assuming a repeated occurence of the lowest/highest reward available
for an infinite time period and computing the total discounted reward obtained).
Our prototype aggregation code was incapable of handling the exact and near-
exact analysis of the largest models tried, and those entries in the table are there-
fore missing.

We note that IVI inaccuracies of much greater than 25% may not represent
very useful bounds on state value (we have not yet conducted experiments to eval-
uate this question). For this reason, the last three columns of the table are shown
primarily for completeness and to satisfy curiosity. However, an inaccuracy of
10% can be expected to yield useful information in selecting between different
control actions — we can think of this level of inaccuracy as allowing us to rate
each state on a scale of one to ten as to how good its value is. Such ratings should
be very useful in designing control policies.

We note that our prototype code is not optimized in its handling of either space
or time. Similar prototype code for explicit MDP problems can handle no more
than a few hundred states. Production versions of explicit MDP code today can
handle as many as a million or so states. Our aggregation and BMDP algorithms,
even in this unoptimized form, are able to obtain nontrivial bounds on state value
for state-space sizes involving thousands of states. We believe that a production
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version of these algorithms could derive near-optimal policies for MDP planning
problems involving hundreds of millions of states.

8. Related Work and Conclusions

Our definition for bounded-parameter MDPs is related to a number of other ideas
appearing in the literature on Markov decision processes; in the following, we
mention just a few of the closest such ideas. First, BMDPs specialize the MDPs
with imprecisely known parameters (MDPIPs) described and analyzed in the oper-
ations research literature by White and Eldeib [17], [18], and Satia aud Lave [15].
The more general MDPIPs described in these papers require more general and
expensive algorithms for solution. For example, [17] allows an arbitrary linear pro-
gram to define the bounds on the transition probabilities (and allows no impreci-
sion in the reward parameters) — as a result, the solution technique presented
appeals to linear programming at each iteration of the solution algorithm rather
than exploit the specific structure available in a BMDP as we do here. [15] men-
tions the restriction to BMDPs but gives no special algorithms to exploit this
restriction. Their general MDPIP algorithm is very different from our algorithm
and involves two nested phases of policy iteration — the outer phase selecting a
traditional policy and the inner phase selecting a “policy” for “nature”, ie., a
choice of the transition parameters to minimize or maximize value (depending on
whether optimistic or pessimistic assumptions prevail). Our work, while originally
developed independently of the MDPIP literature, follows similar lines to [15] in
defining optimistic and pessimistic optimal policies. In summary, when uncer-
tainty about MDP parameters is such that a BMDP model is appropriate, the
MDPIP literature does not provide an approach that exploits the restricted structure
to achieve an efficient method (we note appealing to linear programming at each
iteration can be very expensive).

Shapley [16] introduced the notion of stochastic games to describe two-person
games in which the transition probabilites are controlled by the two players.
MDPIPs, and therefore BMDPs, are a special case of alternating stochastic games
in which the first player is the decision-making agent and the second player, often
considered as either an adversary or advocate, makes its move by choosing from
the set of possible MDPs consistent with having seen the agent’s move.

Bertsekas and Castafion [3] use the notion of aggregated Markov chains and
consider grouping together states with approximately the same residuals. Methods
for bounding value functions are frequently used in approximate algorithms for
solving MDPs; Lovejoy [13] describes their use in solving partially observable
MDPs. Puterman [14] provides an excellent introduction to Markov decision pro-
cesses and techniques involving bounding value functions.

Boutilier, Dean and Hanks [5] provide a careful treatment of MDP-related
methods demonstrating how they provide a unifying framework for modeling a
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wide range of problems in Al involving planning under uncertainty. This paper
also describes such related issues as state space aggregation, decomposition and
abstraction as these ideas pertain to work in Al. We encourage the reader unfamil-
jar with the connection between classical planning methods in Al and Markov
decision processes to refer to this paper.

Boutilier and Dearden [6] and Boutilier et. al. [8] describe methods for solving
implicitly described MDPs using dynamic aggregation — in their methods the
state space aggregates vary over the iterations of the dynamic programming algo-
rithm. This work can be viewed as using a compact representation of both policies
and value functions in terms of state aggregates to perform the famuiiar dynamic
programming algorithms. Dean and Givan [9] reinterpret this work in terms of
computing explicitly described MDPs with aggregate states corresponding to the
aggregates that the above compactly represented value functions use when they
have converged. Dean, Givan, and Leach [10] discuss relaxing these aggregation
techniques to construct approximate aggregations — it is from this work that the
notion of BMDP emerged in order to represent the resulting aggregate models.

Bounded-parameter MDPs allow us to represent uncertainty about or variation
in the parameters of a Markov decision process. Interval value functions capture
the resulting variation in policy values. In this paper, we have defined both
bounded-parameter MDP and interval value function, and given algorithms for
computing interval value functions, and selecting and evaluating policies.
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11. Appendix — Proofs Omitted Above for Readability

Lemma 1: For any policy T € I1, MDP M € M, , and value function ve V,
(a) there are MDPs M ; € X), and M, € X), such that

Vi, nSaom Vg, 1 Soom Vg, - (34)
(b) Also, there are MDPs M, € X,, and M, € X,, such that

Vi M,, (V) Saom VI M, 2 Siom VI M., V) . (35)

Proof: To show the existence of M, let O = g,, ..., g, be an ordering on
states such that for all / and j if 1<i<j<k then V) (g)<Vy (q))
(increasing order). Note that ties in state values permit different orderings; for
the proof, it is sufficient to chose one ordering arbitrarily. Consider M , € X,, ,
the order-maximizing MDP of O. M, is constructed so as to send as much
probability mass as possible to states earlier in the ordering O, i.e. to those
states g with lower value V,, 1(g) . It follows that for any state p,

Y (Freanvy, n(q)) < 3 (Fmevy, ) (36)
ge Q g€ Q
Thus, for any state p,

Vi@ = R +Y Y (F,ﬁ{,(n(p))vM,n(q)) (37)

qe Q
2R(p)+1 3, (P o)V, o) (38)

ge Q
= VIMO, n(VM, n)(P) (39)

By Theorem 6, these lines imply V Mo, m <iom VM, x » as desired.

The existence of M, can be shown in the same except that O is chosen to order
the states by increasing value. Thus M, is constructed so that

> (F,’ti,(n(p))VM, n(q)) <y (F%"(TE(P))VM’ n(q)) . (40)

ge Q g€ Q
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Part (b) is shown in the same manner as part (a) except that we replace each
occurrence of VM, o(p) with VI M, «V)(p) and each occurrence of VM’ @
with v(q) .

3 (Lemma 1)

Lemma 2: Let 7 be a policy in IT and M, M, be MDPs in M, .

Vg, n2om Vit 1 804 Vg, 7 200m Vig, 5 » 2a0d (41)

(b) for My = M, ®%, M,,

VMa, 1 Sdom VM,, r and VM3, 7 Sdom VMz,n . (42)

Proof: Part (a): We construct a value function v such that v 24, Vi 7.
V Z4om VMz, noand v Sy VMB’ = as follows. Foreach p € 0, let

v(p) = max(Vy, (p): Vg, o(P)) 43)

Note that this implies v 24, Vyy n and v 2 VM x- We now show using
Theorem 6 that v<;.,V Myn- BY Theorem 6 it suffices to prove that

V Sgom VI, n(v) which we now do by showing v(p) < VI M, <V)(p) for arbi-
trary p €

Case 1. We suppose VM «p)2 VM2 (D).

From Equation 43 we then have that w(p) = V,, (D). By the definition of
®n., we know FMn(p)) = FMin(p)) when V), (p)2Vy, x(p) as in
this case. This fact, together with the definitions of VI VM > BN ,and v
allow the following chain of equations to conclude the proof of case 1:

V(p) = VMI, n(p)

R(P)+Y Y, Fo@p)Vy, )
qe Q

R(p)+Y Y, Fyim(p)v(g) (44)

qe Q

R(p)+Y Y, FYam(p)v(g)
ge Q

VI, {0)(P)

IA

Case 2: Suppose VM,, 2P) < VMz, P -
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We then have F M 3(7t(p)) = F M 2(n(p)) by the definition of ®r ., and
v(p) = Vy . by the definition otg v, and Equation 44 holds with M| replaced
by M, , as dlesued concluding the proof of part (a).

Part (b): The proof is exactly dual to part (a) by replacing “max” with “min,
< with 2 (and vice versa), and < with >.

0 (Lemma 2).

Lemma 3: Given a BMDP M, , and policies 7, m, € I1, 1, = 7, @

opt T2 and
pes
(@) Vig, 240m Vig, and Vi 240n Vi

(b) If th -—th then V¢n Zont V}n and th - V¢
(C) Vln =dom Vln; and Vln “dom V'Ln

@ If th -th then V}n —pethn and V}ﬂ _pesV}n .

Proof: Part (a): We prove part (a) of the lemma by constructing a value func-
tion v such that v>,, th and vy, VTn We then show that v <, VTn

using Theorem 6. We construct v as follows. Let v(p) = max(VTn p), VTn (p))
foreach pe Q.

This construction implies that v>,,, VTn and v, th We now show
V <gom th by giving an MDP M, for which VM 1 24om V- Usmg Theorem 6
it suffices to show that VI My, W) 24m V.

Let M, € M; be a m; -maximizing MDP, and M, € M, be a T, -maximizing
MDP. Note that this implies that VTn] = VM],,I1 and VTn2 = VMz, 7,

We now construct M, € M; as follows: foreach p, q, o,

M .
Fpg(@ if Vi () 24 Vip (p)

FM 2(c)  otherwise

It remains to show that VI My, (v)(p) 2v(p) for all pe Q. Now fix an arbi-
trary pe Q.

Case 1: Suppose Vin, (p) 2o %nz(p) .

Then by the definition of &, , 73(p) = 7;(p). Also, by the definition of 2, ,
VTn P2 VTn (p), and so v(p) = VM , (p) is true, and by the definition of
M, FM vd 3(ma(p)) = F M 1(n3(p)) The followmg inequations thus hold:

v(p) = Vi (P) (45)
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= R(p)+Y Y, (Fpqd 0,() V1, (@) (46)

qe€ Q

= R(p)+Y Y, (F3(my(p) Vi (@) (47)
g€ Q

< R(p)+Y 2 (FY3 (n3(p)V(@)) (48)
qge Q

= VI, o 0)P) (49)

Case 2: Suppose Vi, (P) <op Vig (P) -

Then by the definition of @, 3(p) = T,(p) . Also, by the definition of 2, ,
VTnI(P) VT,t (p), and so v(p) = VM n, (p) is true, and by the definition of
M,, FM g (TL'3(p)) = (n3(p)) Then Equation 45 thru Equation 49 hold with
M, and 7, in place of M; and m, respectively, yielding again that
v(p)< VI M., n3(V)(P) , as desired.

Case 1 and Case 2 together imply that v(p) < VI M, ns(v)(p) for all pe Q,
which with Theorem 6 implies part (a) of the lemma.

Proof: Part (b): Supposing that Va, = Vi, , we show Vi 2 Vig, and
V¢n3 2ot V¢n2. From part (a) of the theorem, we know that VT,t3 Zdom VTnl and
VTn 24om VTn . It suffices to prove in addition that V¢n3 2dom Vlnl and
V¢n 2 dom V¢n We show both by defining v(p) = max(V¢,t (p), V¢n (p)) for
each state p € Q, observing that v 2,4, V¢n and v 24, V¢n , and then show1ng
that V¢n Zdom V -

We can show V¢n 24, v by showing that for arbitrary M € M, Vy, r, Ziom V-
By Theorem 6 it suffices to show that for arbitrary state pe Q, VI, s w)(p)
2> v. We divide now into two cases:

Case 1: Suppose Vig (p) 2 Vi, (p).

With the part (b) assumption (VTn = VT,t ), this implies th (P) 2ot V¢n2(p)
Then by the definition of @0 . 1t3(p) = nl(p) Also by deﬁmtlon in this case
v(p) = V¢nl(p). Let M, be a m; -minimizing MDP. The following inequation
chain gives the desired conclusion:

Vir, (P) (50)

v(p)

R()+Y Y, For (my(p)Vig () (51)
q9€ 0
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SR(PY+Y Y, F@(p)Viy (9) (52)

g€ Q

SR(p)+Y Y, F¥ my(p))v(g) (53)
g€ Q

< Vi @) (54)

Line 52 requires some justification. Consider an MDP M defined to agree
with M, everywhere except that F glql F M for every g€ Q. If Line 52 did
not hold, we would have VI M! ,n,(VJ'n:l) <gom Vlnl and then Theorem 6 could be
used to show that VM;, n, dom Vlnl , contradicting the definition of Vlnl

Case 2: Suppose Vig, (p) < Vig, (p).

With the part (b) assumptlon th1s implies that V:n (P) <op V;,[ (p) .

Then by the definition of €Bopt ,» Ty(p) = T,(p). Also v(p) = Vin (p).Let M,
be a 7, -minimizing MDP. Equations 50 through 54 now hold with M 1 and 7,
replaced by M, and m,, respectively.

We have now shown in both cases that v(p) < VI M, (v)(p), as desired, con-
cluding the proof of part (b) of the theorem.

Proof: Part (c): We prove part (c) of the lemma by constructing a value func-
tion v such that v>,,, V¢n and v, Vin We then show that v<, V¢,t
using Theorem 6. We construct v as follows. Let v(p) = max(Vi, (p), Vi, (p))
for each pe Q. This implies v2>,,, V*Ln and v2, V¢n We now show
V Siom Vig, by showing that for arbllrary Me Mi , VM,M 24om V. Using
Theorem 6 it suffices to show that VI M, 7, V) 24om v

Let M, € M; be a m; -minimizing MDP, and M, € M; be a m,-minimizing
MDP. Note that this implies that Vi, = V), . and Vi =V, ..

Now fix an arbitrary p € Q, and show that VI M, n,,(")(P) 2v(p).
Case 1: Suppose Vi (p) 2pes Vig (P) -
Then by the definition of (-Dpes » T4(p) = my(p). Also, by the definition of 2,

V¢nl(p) > V¢n2(p) and so v(p) = VMl,nl(p) is true. Equations 50 through 54
now hold with 7, in place of 75, giving the desired result.

Case 2: Suppose Vgnl(p) <pes V}n (p).

Then by the definition of ®pes » T4(p) = 7,(p). Also, by the definition of 2,
V¢nl(p) < Vinz(p), and so v(p) = VMz: nz(p) is true. Then Equations 50
through 54 hold with M,, m,, and m, in place of M, ®;, and 7,, respec-
tively, yielding again that v(p) < VI M, m(v)(p) , as desired.
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Case 1 and Case 2 together imply that v(p) < VI), 7t4(v)(p) for all pe Q,
which with Theorem 6 implies part (c) of the theorem.

Proof: Part (d): Supposing that Vln, = Vig,, we show Vi, 2pes Vi, and
Vin,2 Zes Vip, - From part (c) of the theorem, we know that V*m 2gom Vig, and
Vig, Zdom V¢n It suffices to prove in addition that Vi 24 VTn and
VTn Zdom Vrn We show both by defining v(p) = max(VT,t (p) VTn (p)) for
each state p € Q , observing that v 24, VT,El and v 2, VT,c , and then showmg
that VTn‘ 2,mV by giving an MDP M, for which VM,,, 1z, Zdom V- Using
Theorem 6 it suffices to show that VI M, m(v) Ziom V

Let M, € M, be a m,-maximizing MDP, and M, € M; be a T,-maximizing
MDP. Note that this implies that V1, =V, o and Vo, = V) o

We now construct M, € M; as follows: for each p, g, a.,

FMa@) if Vi, (P) Zpes Vir (P)

Fliso) =
FM 2(o)  otherwise
pq

It remains to show that VI M, 714(v)(p) >v(p) for all pe Q. Now fix an arbi-
trary pe Q.
Case 1: Suppose VTn (P) Zpes VTn (p) -
With the part (d) assumption this 1mp11es that V¢n (P) 2pes Vm (p) .
Then by the definition of (-Bpes , Tu(p) = 7(p). Also by deﬁnltlon 1n this case
v(p) = VT,‘,t (p). Also, by the definition of M,, F (7:4(p)) = (11:4(p))
Equations 45 through 49 with ; and M5 replaced by 7t4 and M, complete the
argument.

Case 2: Suppose VTn,(P) < VTnz(p).

With the part (d) assumption this implies that Vinl(p) <opt V¢n2(p) .

Then by definition 7 (p) = my(p). Also v(p) = VTnZ(P)- Equations 45
through 49 now hold with M, m;, and 7, replaced by M,, 7,, and m,,
respectively.

We have now shown in both cases that v(p) <VI My, (v)(p), as desired, con-
cluding the proof of part (d) of the theorem.

Q (Lemma 3).

Theorem 9: For any BMDP M, , at every state p,

Viw(p) = max [mm VIy, o(Vie)(p), Max VI, a(v%m)(p)] (55)

QLEA, £, “MeM, MeM,
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and

Vi) = max [ min Vi, o(Vip)(p), Max Vi o(Vige(p)]-  (56)
a€A, <, MeM, Me M,

Proof: We consider the V;,, version only. Throughout this proof we assume
T,y 1S an optimistically optimal policy for M; , which exists by Theorem 8. We
suppose Equation 55 is false and show a contradiction. We have two cases:

Case 1: Suppose the upper bounds are not equal at some state p:

Vien(p) # max max VI, (Vo )(p). (57)
AEAMeM,

There are two ways this can happen:

Subcase 1a: Suppose there exist some MDP M € M, and action 0. € A such
that

Vie(P) < VI o(Vien)(P) (58)

We show how to construct a policy 7 whose interval value V;, dominates V;
under <, , contradicting the definition of V,,, . Define 7 to be the same as
T €Xxcept that 7(p) = a. By the definition of Vinq,’ there must exist
M’e M; such that Vy,, = VTno,ﬂ = Vi - From the theory of exact MDPs,
we then have that:

View = Vigr . = Vi Vg2 ) = Vi o (Vi) (59)

Our subcase assumption implies
VTopt(p) < VIM’ n(VTopt)(p) . (60)

Consider the MDP M, € M; with the same parameters as M’ except at state p
where the parameters are given by M . More formally,

Fy

FM?, | Fpy when p’ = p

g = ’ .
F:'Ilq, otherwise

(61)

This construction of M, together with Equation 59 and Equation 60, guaran-
tees the following property of Vpy :

VTopt <dom VIM3, n(VTopt) (62)
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Equation 62 along with Theorem 6 implies that V My,n dom Vtope and thus that
Vi >opt Vi opt » cONtradicting the definition of V; oy and concluding Subcase 1a.

Subcase 1b. Suppose that for every choiceof o€ A and M € M;
View(D) > VI o(Vig)(P). 63)

We obtain a contradiction directly by exhibiting o and M € M; in violation of
this supposition. Let o be 7., (p). Let M be a ., -maximizing MDP in M, ,
which exists by Theorem 7. Our selection of 7., guarantees that VTn = Viop »
and our choice of M guarantees that V,, , = Vz, . Equations 7 and 8 from
the theory of exact MDPs then ensure that VTopt(p) = VI oVrep)(P) » con-
cluding case 1.

Case 2. Suppose at every state g the upper bounds are equal but at some state p
the lower bounds are not equal:

forall g, Vion(g) = max max VI, o(Vio)(g), and
aeA MeM, ’

Viopt(p) * max min VIM, Q(Vl'opt)(p)
e anm(p) Me Mi

(64)

Note that the action selection in the second line of Equation 64 is restricted to
range over those actions in Py, (p) because those are the only actions that can
be selected in Equation 55 due to the emphasis of <,, on upper bounds (the
upper bounds achievable by an action primarily determine whether it is selected
by the outer maximization in Equation 55, and only if the action is tied for the
maximum upper bound, i.e. in pVW(p) , does its lower bound affect the maximi-
zation).

Again, there are two ways the second line of Equation 64 can hold.

Subcase 2a. Suppose Vi,(p) is too small, ie., there exists some action
ae pvw(p) such that for every MDP M € M, , we have

Viep(P) < VI o(Viep)(P) - (65)

We show a contradiction by giving a policy © whose interval value function is
greater than V;, under the <, ordering. Define 7 to be the same as 7,y
except that n(p) = o. By the definition of th , there must exist M’e M,
such that Vp,, = VTn VM, . As in Subcase 1a, we then have that:

VTopt = VM’, T = VIM” nm(VM’, nopl) = VIM” nop((VTopt) . (66)
From Equation 64 and o € pvw(p) it follows that for some M € M, ,
VTopt(p) = VIM, a(VTopt)(p) ’ (67)
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and thus for M; € M, defined as in Subcase 1a to be equal to M’ everywhere
except at state p where M, is equal to M, we have

View = Vipg, 2(Viop) - (68)

Therefore V Myn = Viop » and by the definitions of V;,, and Vz,, we then have
that Vo 24om VTn 2iom VM x = Viom, and so Vp is equal to Vp,, . We must
now show that Vi >4 VJ,(,I,t to conclude Subcase 2a. We show this by show-
ing that for every MDP M, e M;, Viy <am VIy, 2(Vig) and using
Theorem 6 to conclude V M, m >dom Viep and thus Vi >d0m View as desired.

To conclude Subcase 2a, then, we must show Vlop, <dom VIM Vi) We
show this by contradiction.  Suppose this is false — then either
View = VI M, 2(Viop) » Which our Subcase 2a assumption rules out at state p , or
there must be some state g for which Vi,(q) > VI, n(Vlom)(CI) Again our
Subcase assumption rules this out for state p, so we know that g is not equal to
p, and therefore by our choice of T we have that (g) = 7,,(g), and thus that
View(q) > VI My, (Vien)(q) . We can now derive a contradiction by combining
M, at state g 'with a T, -Minimizing MDP M at all other states to get an
MDP M € M, for which Vi, strictly dominates VI, (VLO,,,) showing that
Viopt >dom VM m, (by Theorem 6) contradicting the %act that V¢n = V¢(,pl
(The combination of M 4 and M to get M ¢ is analogous to the construction in
Line 61 above).

Subcase 2b. Suppose Vi (p) is “too big” in Line 64, i.e., for every action
o€ py, (p) there is some MDP M, € M; such that VI, (Viu)(p) < View(P)-

Consider @ = T,,(p) . The definition of “optimistically optimal” along with the
theory of exact MDPs guarantees us that there is some MDP M such that

Viw = Vir, = Varn, = Vi, 0, Vi n) = Vin, 2, (View) (69)
By our case 2 assumption,

VTopt(p) = max max VIM, a(VTopt)(p)? (70)
aeEAMeM,

and this, together with Line 69 and o = 7.,(p) implies

Vi n (Vion)(p) = max max Vi, oV1ep)(P) 5 (71)
aEAMeM.

and therefore that

nopt(p) € argmax max VIM, a(VTopt)(p) ’ (72)
aeEA MeM.
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which implies that o= m,(p) € Pv,., (p). We can then use our subcase
assumption that there must be an MDP M o« €M such that

VIy a0 (Vie)(P) < Viep(P) -

Let M, be a T, -minimizing MDP, as per Theorem 7. Then V,, o = Vln =
Vien by expanding definitions. So VIM ., (Vigpt) = Vigp - We can now create
a new MDP Mg by copying M, at every state except p, where Mg copies
M, following the construction used to define M in Subcase 1a. By construc-
tion we then have

VIMa, nm(Vlopt) <d0m V‘Lopt , ) (73)

which by Theorem 6 implies Vi, <gm Viey . contradicting our choice of 7o,
and concluding Subcase 2b, Case uE and the proof of Theorem 9.

O (Theorem 9).

Theorem 10: For any policy 7, IVl and IV, are contraction mappings.

Proof: We first show that IVIy, is a contraction mapping on V, the space of
value functions. Strictly speaking, IVIy is a mapping from an interval value
function V; to a value function V. However, the specific values V(p) only
depend on the upper bounds V; of V; . Therefore, the mapping IVIs,, is isomor-
phic to a function that maps value functions to value functions and with some
abuse of terminology, we can consider IVIy, to be such a mapping. The same is
true for IVl , which depends only on the lower bounds V..

Jet 2 and ¥ be interval value functions, fix pe€ Q, and assume that
IVITn(v)(p)>IVITn(u)(p) Let M be an MDP M € M, that maximizes the
expression VI, ~()(p) (Lemma 1 implies that there is such an MDP in the
finite set X,/ , guaranteemg the existence of M in spite of the infinite cardinal-
ity of M; ).

Then,
0 < IV, () (p) - IVLy (#)(p) (74)
= max VI ,(m)(p) - max VI .(u)(p) (75)
MeM, Me M,

<@+ 3 Fraem@)-Re)-1 3 Fhren@) (6

ge Q q€ Q

= 3 Fre)ne - @) 77)

g€ Q
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PR AOTEE) (78)

g€ Q

= yllvr —u] . (79)

Line 75 expands the definition of IVI; . Line 76 follows by expanding the defi-
nition of VI and from the fact that M maximizes VI M, 2(v1)(p) by definition.
In Line 77, we simplify the expression by cancelling the immediate reward
terms and factoring out the coefficients F M In Line 78, we introduce an ine-
quality by replacing the term vi(g) — u1(g) with the maximum difference over
all states, which by definition is the sup norm. The final step Line 79 follows
from the fact that F is a probability distribution that sums to 1 and [jvy — ]|
does not depend on q.

Repeating this argument interchanging the roles of # and \hatv in the case that
VI (%) (p) < IVI;(#)(p) implies

VI3 5)(P) - VI3 (@)(p)| < Yllvr - ] (80)

for all p € Q. Taking the maximum over p in the above expression gives the
result.

The proof that IVI,, is a contraction mapping is very similar, replacing IVIy,
with IVI,_ throughout, replacing maximization with minimization in Line 74,
and selecting MDP M to minimize the expression VI, .(u1)(p) when
IVLL (V) (p) 2 IVIL(#)(p) -

@ (Theorem 10).

Theorem 11: For any policy ©t, Vi, is a fixed-point of IVl and V3, of IVIly,
and therefore V;, is a fixed-point of IVI; .

Proof: We prove the theorem for IVI,_; the proof for IVIy, is similar. We
show

@) IVIL (Vi ;) Sgom Vi » and
(b) IVI'Ln(VI 11;) Zdom V'Ln ’

from which we conclude that IVIL(V;,) = V. . Throughout both cases we
take M " to be a T -minimizing MDP, so that V|, = V o By Theorem 7 M
must exist. ’

We first prove (a). From Theorem 3, we know that V. . is a fixed point of
VI,,. ... Thus, for any state g€ Q,

Vin@ = Vi o@ = VI o(Viye @) = Ve 1(Vig)(g). (81)
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Using this fact and expanding the definition of IVI1,, we have, at every state g,

V1L, (Vi )(@) = min VI, (Vip)g)
MeM,

< VI (Vi@ (82)
Vin(g).

This implies that IVIL (Vi) <gom Vi, as desired.

To prove (b), suppose for sake of contradiction that for some state p,
Ith(%n)(p) <Vi(p). Let M, € M; be an MDP that minimizes® the expres-
sion VI, Vi )(P).

Then, substituting M, into the definition of IVI,,
VL (V. )(p) = VI o(Vig)(p) < Vig(p). (83)

We can then construct an MDP M, by copying M * at every state except p,
where M, copies M (see the proof of Theorem 9, Case 1a for the details of a
similar constructlon) Because M, is a copy of M* at every state but p,
Equation 81 must hold with M, replacing M?™ at every state but p. Because
M, is acopy of M, at state p, Equation 83 with M, replacing M| must hold
at state p . These two facts together imply

VIMZ’ n(VwLn) <dom VJ’n (84)

Then by Theorem 6 V My, dom Vi, , contradicting the definition of Vi, .
3 (Theorem 11).

" Theorem 13:
(a) IVITOpt and IVI¢pes are contraction mappings.

(b) For any value function V' and associated action set selection function py,
and oy, VL, v and IV, v are contraction mappings.

Proof: We first prove (a). The proof that IVIly . is a contraction mapping is an
extension of the proof of Theorem 10. Let # and ¥ be interval value functions,
fix pe @, and assume that IVITopt(f;)(p) ZIVITopt(ﬁ)(p). Select M € M; and
O € A to maximize the expression VI, ,(v1)(p) (again, Lemma 1 implies that

6. Such an MDP exists by Lemma 1, which implies that there must be such an MDP in the finite set
X M, [ Mi .
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there is such an MDP in the finite set X,, , guaranteeing the existence of M in
spite of the infinite cardinality of M, ).

Then,
0 < IVl $)(P) ~ VI o (D(P) (85)
= max max VI, ,(v1)(p)-max max VI «un(p) (86)
aeAMeM, AEAMeM,
<R+ T, Fem@)-Re) -1 3, Freun(a) (87)
qe Q ge Q
<ylvr — . (88)

Line 86 expands the definition of IVIy, , noting that maximizing using <y
selects interval upper bounds based only on the upper bounds of the input inter-
vals. Line 87 follows from our choice of M and o to maximize VI, «(p) .
Line 88 follows from Line 87 in the same manner that Line 79 followed from
Line 76 in the proof of Theorem 10, and the desired result for IVI;,, for part
(a) of the theorem also follow in the same manner as the remainder of
Theorem 10 followed from Line 79.

To prove that IV, is a contraction mapping, we again fix a state p and
assume IVlipes(\‘))(p) 2 IVIipeS(ﬁ)(p) . We then use vy to choose an action o
that maximizes miny, ¢ » (VI «vW(p)) and uy to choose an MDP M that
minimizes VI M, o(u)(p) (again, Lemma 1 implies that there is such an MDP
in the finite set X, , guaranteeing the existence of M ). Using a and M as
defined above, we have

0 < IVL o (0)(P) — IVIL (8D(p) (89)
= max min VI, ,(u)(p)-max min VI (u)(Pp) (90)
aeAMeM, oeEAMeM,
< min VI, (v)(p) - min VI, (u)(p) 91)
Me M. Me M,
<Vl (0)(p) = VI o(u)(p) 92)

Line 90 expands the definition of IVI, ., using the fact that maximizing over
<, selects lower bounds based only on the lower bounds of the intervals
being maximized over. Line 91 substitutes the action o, which introduces the

inequality since o was chosen to guarantee
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min VI, ,(v)(p) = max min VI, ,0)(®), 93)
MeM, CEAMeM,

and the meaning of maximization guarantees that

min VI, (w)(p) < max min VI, (w)(p). (94)
MeM, cceAMeM,

Line 92 follows similarly because M was chosen to guarantee

VI (w)(p) = min VI M, (#)(P) » (95)
Me M,

and the meaning of minimization guarantees that

VI ov0)(p) 2 min VI, (1)) (96)
MeM,

The desired result for IV . in part (a) of the theorem then follows directly
from Line 92 in the same manner as the result for IVI; followed from
Line 86, concluding the proof of part (a) of the theorem.

For part (b), the proof for IVl v follows exactly as the proof for IVIi,.,
except that the set of actions considered in the maximization over actions at
each.state p is restricted to py(p) ..Like.wise, Proving IVItpes v is the same as
proving IVt where the set of actions is restricted to 6,(p) .

3 (Theorem 13).
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Abstract. In this paper, we introduce the notion of an bounded param-
eter Markov decision process (BMDP) as a generalization of the familiar
ezact MDP. A bounded parameter MDP is a set of exact MDPs spec-
ified by giving upper and lower bounds on transition probabilities and
rewards (all the MDPs in the set share the same state and action space).
BMDPs form an efficiently solvable special case of the already known
class of MDPs with imprecise parameters (MDPIPs). Bounded parame-
ter MDPs can be used to represent variation or uncertainty concerning
the parameters of sequential decision problems in cases where no prior
probabilities on the parameter values are available. Bounded parameter
MDPs can also be used in aggregation schemes to represent the varia-
tion in the transition probabilities for different base states aggregated
together in the same aggregate state.

We introduce interval value functions as a natural extension of tradi-
tional value functions. An interval value function assigns a closed real
interval to each state, representing the assertion that the value of that
state falls within that interval. An interval value function can be used
to bound the performance of a policy over the set of exact MDPs asso-
ciated with a given bounded parameter MDP. We describe an iterative
dynamic programming algorithm called interval policy evaluation which
computes an interval value function for a given BMDP and specified pol-
icy. Interval policy evaluation on a policy = computes the most restrictive
interval value function that is sound, i.e., that bounds the value function
for 7 in every exact MDP in the set defined by the bounded parameter
MDP. We define optimistic and pessimistic notions of optimal policy, and
provide a variant of value iteration [Bellman, 1957] that we call interval
value steration which computes a policies for a BMDP that are optimal
in these senses.

1 Introduction

The theory of Markov decision processes (MDPs) provides the semantic founda-
tions for a wide range of problems involving planning under uncertainty [Boutilier
et al., 1995a, Littman, 1997]. In this paper, we introduce a generalization of
Markov decision processes called bounded parameter Markov decision processes
(BMDPs) that allows us to model uncertainty in the parameters that comprise



an MDP. Instead of encoding a parameter such as the probability of making a
transition from one state to another as a single number, we specify a range of
possible values for the parameter as a closed interval of the real numbers.

A BMDP can be thought of as a family of traditional (exact) MDPs, i.e.,
the set of all MDPs whose parameters fall within the specified ranges. From this
perspective, we may have no justification for committing to a particular MDP
in this family, and wish to analyze the consequences of this lack of commitment.
Another interpretation for a BMDP is that the states of the BMDP actually
represent sets (aggregates) of more primitive states that we choose to group
together. The intervals here represent the ranges of the paramcters over the
primitive states belonging to the aggregates. While any policy on the original
(primitive) states induces a stationary distribution over those states which can
be used to give prior probabilities to the different transition probabilities in the
intervals, we may be unable to compute these prior probabilities—the original
reason for aggregating the states is typically to avoid such expensive computation
over the original large state space.

BMDPs are a efficiently solvable specialization of the already known Markov
Decision Processes with Imprecisely Known Transition Probabilities (MDPIPs).
In the related work section we discuss in more detail how BMDPs relate to
MDPIPs.

In a related paper, we have shown how BMDPs can be used as part of a
strategy for efficiently approximating the solution of MDPs with very large state
spaces and dynamics compactly encoded in a factored (or implicit) representa-
tion [Dean et al., 1997). In this paper, we focus exclusively on BMDPs, on the
BMDP analog of value functions, called interval value functions, and on policy
selection for a BMDP. We provide BMDP analogs of the standard (exact) MDP
algorithms for computing the value function for a fixed policy (plan) and (more
generally) for computing optimal value functions over all policies, called inter-
val policy evaluation and interval value tteration (IVI) respectively. We define
the desired output values for these algorithms and prove that the algorithms
converge to these desired values in polynomial-time, for a fixed discount factor.
Finally, we consider two different notions of optimal policy for an BMDP, and
show how IVI can be applied to extract the optimal policy for each notion. The
first notion of optimality states that the desired policy must perform better than
any other under the assumption that an adversary selects the model parameters.
The second notion requires the best possible performance when a friendly choice
of model parameters is assumed.

2 Exact Markov Decision Processes

An (exact) Markov decision process M is a four tuple M = (Q, A, F, R) where
Q is a set of states, A is a set of actions, R is a reward function that maps each
state to a real value R(q),! and F is a state-transition distribution so that for

! The techniques and results in this paper easily generalize to more general reward
functions. We adopt a less general formulation to simplify the presentation.



a € Aand p,qg€ Q,
Fpe(@) = Pr(Xey1 = q|X; = p,Ur = @)

where X; and U, are random variables denoting, respectively, the state and
action at time . When needed we will write F¥ denote the transition function
of the MDP M.

A policy is a mapping from states to actions, 7 : @ — .A. The set of all
policies is denoted IT. An MDP M together with a fixed policy 7 € IT determines
a Markov chain such that the probability of making a transition from p to ¢ is
defined by Fpq((p)). The ezpected value function (or simply the value function)
associated with such a Markov chain is denoted Vps,~. The value function maps
each state to its expected discounted cumulative reward defined by

Vat, (p) = R(p) + 7 Y, Fpq(m(p)) Vi, (9)
q€Q

where 0 < v < 1is called the discount rate.? In most contexts, the relevant MDP
is clear and we abbreviate Vas,» as Vr.

The optimal value function V3, (or simply V* where the relevant MDP is
clear) is defined as follows.

V*(p) = max | B(p) +7 3 Fpg(e)V*(0)
q9€Q

The value function V* is greater than or equal to any value function V; in the
partial order >gom defined as follows: Vi >4om V2 if and only if for all states g,
Vi(q) > Va(q)-

An optimal policy is any policy #* for which V* = V.. Every MDP has at
least one optimal policy, and the set of optimal policies can be found by replacing
the max in the definition of V* with arg max.

3 Bounded Parameter Markov Decision Processes

An bounded parameter MDP is a four tuple M = (@, A, F, R) where Q and A
are defined as for MDPs, and F and R are analogous to the MDP F and R but
yield closed real intervals instead of real values. That is, for any action @ and
states p, g, R(p) and F}, 4(e) are both closed real intervals of the form [/, u] for [
and u real numbers with [ < u, where in the case of F werequire 0 <1 <u<13
To ensure that F' admits well-formed transition functions, we require that for

2 In this paper, we focus on expected discounted cumulative reward as a performance
criterion, but other criteria, e.g., total or average reward [Puterman, 1994], are also
applicable to bounded parameter MDPs.

3 To simplify the remainder of the paper, we assume that the reward bounds are always
tight, i.e., that for all ¢ € Q, for some real I, B(g) = [, ], and we refer to ! as R(q).
The generalization to nontrivial bounds on rewards is straightforward.



[0.1,0.15]
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Fig. 1. The state-transition diagram for a simple bounded parameter Markov decision
process with three states and a single action. The arcs indicate possible transitions and
are labeled by their lower and upper bounds.

any action a and state p, the sum of the lower bounds of Fpq(e) over all states
g must be less than or equal to 1 while the upper bounds must sum to a value
greater than or equal to 1. Figure 1 depicts the state-transition diagram for a
simple BMDP with three states and one action.

A BMDP M = (Q, A, F, R) defines a set of exact MDPs which, by abuse
of notation, we also call M. For exact MDP M = (Q', A, F', R'), we have
MeMifQ =09, A=A, and for any action o and states p,q, R'(p) is in
the interval R(p) and F; () is in the interval Fy q(a). We rely on context to
distinguish between the tuple view of M and the exact MDP set view of M. In
the definitions in this section, the BMDP M is implicit.

An interval value function V is a mapping from states to closed real intervals.
We generally use such functions to indicate that the given state’s value falls
within the selected interval. Interval value functions can be specified for both
exact and BMDPs. As in the case of (exact) value functions, interval value
functions are specified with respect to a fixed policy. Note that in the case of
BMDPs a state can have a range of values depending on how the transition
and reward parameters are instantiated, hence the need for an interval value
function.

For each of the interval valued functions F, R, V we define two real valued
functions which take the same arguments and give the upper and lower interval
bounds, denoted:F_, R, V,and F, R, V, respectively. So, for example, at any
state g we have V(q) = [V(g), V(q)]-

Definition1. For any policy 7 and state g, we define the interval value 174 (@)
of m at ¢ to be the interval

[ﬂl& Va,=(9), max VM,vr(q)]

In Section 5 we will give an iterative algorithm which we have proven to converge
to V. In preparation for that discussion we now state that there is at least one



specific MDP in M which simultaneously achieves V(g) for all states g (and
likewise a specific MDP achieving V. (g) for all g).

Definition2. For any policy #, an MDP in M is m-mazimizing ifit isa possible
value of arg maxprem Va,» and it is w-minimizing if it is in arg minprem Vag,r.

Theorem 3. For any policy 7, there exist n-mazimizing and n-minimizing MDPs
in M.

This theorem implies that V. is equivalent to minpre m Var,« where the min-
imization is done relative to >4om, and likewise for V using max. We give an al-
gorithm in Section 5 which converges to V. by also converging to a m-minimizing
MDP in M (likewise for V).

We now consider how to define an optimal value function for a BMDP. Con-
sider the expression maxrep V.. This expression is ill-formed because we have
not defined how to rank the interval value functions V; in order to select a maxi-
mum. We focus here on two different ways to order these value functions, yielding
two notions of optimal value function and optimal policy. Other orderings may
also yield interesting results.

First, we define two different orderings on closed real intervals:

l1 <1y, 0r

[l w1) Spes [l2, ua] = { I; =1y and u; < uy

() Sop Bl = {0 S0

We extend these orderings to partially order interval value functions by relating
two value functions Vi < V; only when V;(g) < Vz(q) for every state g. We can
now use either of these orderings to compute maxrenz Vr, yielding two definitions
of optimal value function and optimal policy. However, since the orderings are
partial (on value functions), we must still prove that the set of policies contains
a policy which achieves the desired maximum under each ordering (i.e., a policy
whose interval value function is ordered above that of every other policy).

Definition4. The optimistic optimal value function Vopt and the pessimistic
optimal value function Vpes are given by:

Vopt = MaXgem Vi using <opt to order interval value functions
a~ P € A —=op
Voes = maxzen Vr using <pes to order interval value functions

We say that any policy © whose interval value function Vy is >opt (Zpes) the value
functions Vi of all other policies 7’ is optimistically (pessimistically) optimal.

Theorem 5. There exists at least one optimistically (pessimistically) optimal
policy, and therefore the definition of Vopty (Vpes) is well-formed.



The above two notions of optimal value can be understood in terms of a
game in which we choose a policy = and then a second player chooses in which
MDP M in M to evaluate the policy. The goal is to get the highest* resulting
value function Vis,r. The optimistic optimal value function’s upper bounds Vopg
represent the best value function we can obtain in this game if we assume the
second player is cooperating with us. The pessimistic optimal value function’s
lower bounds V., represent the best we can do if we assume the second player
is our adversary, trying to minimize the resulting value function.

In the next section, we describe well-known iterative algorithms for comput-
ing the exact MDP optimal value function V*, and then in Section 5 we will
describe similar iterative algorithms which compute the BMDP variants Vypt

(Vpes)-

4 Estimating Traditional Value Functions

In this section, we review the basics concerning dynamic programming methods
for computing value functions for fixed and optimal policies in traditional MDPs.
In the next section, we describe novel algorithms for computing the interval
analogs of these value functions for bounded parameter MDPs.

We present results from the theory of exact MDPs which rely on the concept
of normed linear spaces. We define operators, VI, and VI, on the space of
value functions. We then use the Banach fixed-point theorem (Theorem 6) to
show that iterating these operators converges to unique fixed-points, V; and V*
respectively (Theorems 8 and 9).

Let V denote the set of value functions on Q. For each v € V), define the (sup)
norm of v by

llvl] = max{o(g)l.

We use the term convergence to mean convergence in the norm sense. The space
YV together with ||-|| constitute a complete normed linear space, or Banach Space.
If U is a Banach space, then an operator T': U — U is a contraction mapping if
there exists a A, 0 < X < 1 such that ||Tv — Tu|| < A||v — u]| for all u and v in U.
Define VI:V — V and foreach r € I, VI, : V = V on each p € Q by

VI(2)(p) = max | R(p) +7 3 Fpa(@)v(q)
qEQ

VI(v)(p) = R(p) +7 Y, Fpa(m(p))v(9)-
qEQ
In cases where we need to make explicit the MDP from which the transition
function F originates, we write VIp » and VIps to denote the operators VI
and VT as just defined, except that the transition function F is FM,
Using these operators, we can rewrite the expression for V* and Vr as

V'(p) = VI(V*)(p) and Va(p) = VIa(Va)(p)

4 Value functions are ranked by >dom-



for all states p € Q. This implies that V* and V; are fixed points of VI and VI,
respectively. The following four theorems show that for each operator, iterating
the operator on an initial value estimate converges to these fixed points.

Theorem 6. For any Banach space U and contraction mapping T : U — U,
there exists a unique v* in U such that Tv* = v*; and for arbitrary 20 in U, the
sequence {v"} defined by v™ = Tv"~! = T converges to v*.

Theorem 7. VI and VI, are contraction mappings.

Theorem 6 and Theorem 7 together prove the following fundamental results
in the theory of MDPs.

Theorem 8. There exists a unique v* € V satisfying v* = VI(v*); furthermore,
v* = V*. Similarly, V. is the unique fized-point of VI,.

Theorem9. For arbitraryv® € V, the sequence {v"} defined by v = VI(v"~1!)
= VI*(v°) converges to V*. Similarly, iterating VI, converges to V.

An important consequence of Theorem 9 is that it provides an algorithm for
finding V* and V;. In particular, to find V*, we can start from an arbitrary
initial value function #° in V, and repeatedly apply the operator VI to obtain
the sequence {v"}. This algorithm is referred to as value iteration. Theorem 9
guarantees the convergence of value iteration to the optimal value function.
Similarly, we can specify an algorithm called policy evaluation which finds V by
repeatedly apply VI, starting with an initial v© € V.

The following theorem from [Littman et al., 1995] states a convergence rate of
value iteration and policy evaluation which can be derived using bounds on the
precision needed to represent solutions to a linear program of limited precision
(each algorithm can be viewed as solving a linear program).

Theorem 10. For fized v, value iteration and policy evaluation converge to the
optimal value function in a number of steps polynomial in the number of states,
the number of actions, and the number of bits used to represent the MDP pa-
rameters.

5 Estimating Interval Value Functions

In this section, we describe dynamic programming algorithms which operate
on bounded parameter MDPs. We first define the interval equivalent of policy
evaluation IV I, which computes V., and then define the variants IV I,y and

VI pes Which compute the optimistic and pessimistic optimal value functions.



5.1 Interval Policy Evaluation

In direct analogy to the definition of VI, in Section 4, we define a function I VI,
(for interval value iteration) which maps interval value functions to other interval
value functions. We have proven that iterating IV I, on any initial interval value
function produces a sequence of interval value functions which converges to Ve
in a polynomial number of steps, given a fixed discount factore 7.

IVI,(V) is an interval value function, defined for each state p as follows:

V1)) = [ i, Vet (0) g Vit (V)52)].

We define IVI, and IVI, to be the corresponding mappings from value func-
tions to value functlons (note that for input V, IVI, does not depend on V and
so can be viewed as a function from V to V——hkew1se for TVI, and V).

The algorithm to compute IV I, is very similar to the standard MDP com-
putation of VI, except that we must now be able to select an MDP M from
the family M which minimizes (maximizes) the value attained. We select such
an MDP by selecting a function F within the bounds specified by F to mini-
mize (maximize) the value—each possible way of selecting F corresponds to one
MDP in M. We can select the values of Fpe(a) independently for each « and
p, but the values selected for different states g (for fixed a and p) interact: they
must sum up to one. We now show how to determine, for fixed a and p, the
value of Fpe(c) for each state g so as to minimize (maximize) the expression
> geo (Fpg(@)V(g)). This step constitutes the heart of the IVI algorithm and
the only significant way the algorithm differs from standard value iteration.

The idea is to sort the possible destination states ¢ into increasing (decreas-
ing) order according to their V (V') value, and then choose the transition prob-
abilities within the intervals specified by F so as to send as much probability
mass to the states early in the ordering. Let ¢1,¢2,...,qx be such an ordering
of Q—so that, in the minimizing case, for all ¢ and j if 1 < ¢ < j < k then
V(g:) € V(q;) (increasing order).

Let r be the index 1 < r < k which maximizes the following expression
without letting it exceed 1:

r—-1

FPle : :—PvQI

=1 f=r

r is the index into the sequence g; such that below index r we can assign the
upper bound, and above index r we can assign the lower bound, with the rest of
the probability mass from p under o being assigned to g,. Formally, we choose
Fpq(a) for all ¢ € Q as follows:

_[Frala)ifj<r
Fpg;(a) = {qu (a) ifj>r

FPq-— Z FPCI:
=1,i#r



Fig. 2. An illustration of the basic dynamic programming step in computing an ap-
proximate value function for a fixed policy and bounded parameter MDP. The lighter
shaded portions of each arc represent the required lower bound transition probabil-
ity and the darker shaded portions represent the fraction of the remaining transition
probability to the upper bound assigned to the arc by F.

Figure 2 illustrates the basic iterative step in the above algorithm, for the
maximizing case. The states g; are ordered according to the value estimates in
V. The transitions from a state p to states ¢; are defined by the function F such
that each transition is equal to its lower bound plus some fraction of the leftover
probability mass.

Techniques similar to those in Section 4 can be used to prove that iterating
IVI, (IVI,) converges to V. (V). The key theorems, stated below, assert
first that IV I, is a contraction mapping, and second that V., is a fixed-point of

IVI,, and are easily proven®.

Theorem 11. For any policy m, IVI, and IVI, are contraction mappings.
Theorem 12. For any policy w, V. is a fized-point of IV, and Va of IVI,.

These theorems, together with Theorem 6 (the Banach fixed-point theorem) im-
ply that iterating IV I, on any initial interval value function converges to Vx,
regardless of the starting point.

Theorem 13. For fized 7, interval policy evaluation converges to the desired in-
terval value function in a number of steps polynomial in the number of states, the
number of actions, and the number of bits used to represent the MDP parameters.

5 The min over members of M is dealt with using a technique similar to that used to
handle the max over actions in the same proof for V'*



5.2 Interval Value Iteration

As in the case of VI, and VI, it is straightforward to modify I VI, so that it
computes optimal policy value intervals by adding a maximization step over the
different action choices in each state. However, unlike standard value iteration,
the quantities being compared in the maximization step are closed real intervals,
so the resulting algorithm varies according to how we choose to compare real
intervals. We define two variations of interval value iteration—other variations
are possible.

Lo 1)0) = gy [min, VIO, o VI 7))

V)0 = e[ in Va0 s Vo (V)15

The added maximization step introduces no new difficulties in implementing
the algorithm. We discuss convergence for IV I,,;—the convergence results for
IVI,,ea are similar. We write mo,,t for the upper bound returned by IVIopt,
and we consi_dg TWoPt a function from V to V because mo,,,(f/) depends
only on V. IVI,, can be easily shown to be a contraction mapping, and it
can be shown_ that Vopt is a fixed point of I VI opt- It then follows that —IV_Iopt
converges to Vop¢ in polynomially many steps. The analogous results for IV.I,,
are somewhat more problematic. Because the action selection is done according
to <opt, which focuses primarily on the interval upper bounds, IV, is not
properly a mapping from V to V, as _I_Vlop,(f/) depends on both V and V.
However, for any particular value function V and interval value function V such
that V = V, we can write IVI,, v for the mapping from V to V which carries V
to Mopt(f/’). We can then show that for each V, IV, \, converges as desired.
The algorithm must then iterate JV I,y convergence to some upper bound V,
and then iterate IV o1, L0 converge to the lower bounds V—each convergence
within polynomial time.

Theorem14. A. IVI,y and IVI,,, are contraction mappings.

B. For any value functions V, IV, v and IV Ipe, v are contraction mappings.
Theorem 15. Vopt is a fized-point of IVIopg , and Vpes of IVIpe,.

Theorem 16. For fized v, iteration of IVIopt converges lo f{,pt, and iteration
of IVIP” converges to Vpes, in polynomially many iterations in the problem size
(including the number of bits used in specifying the parameters).

6 Policy Selection, Sensitivity Analysis, and Aggregation

In this section, we consider some basic issues concerning the use and interpre-
tation of bounded parameter MDPs. We begin by reemphasizing some ideas
introduced earlier regarding the selection of policies.



To begin with, it is important that we are clear on the status of the bounds
in a bounded parameter MDP. A bounded parameter MDP specifies upper and
lower bounds on individual parameters; the assumption is that we have no addi-
tional information regarding individual exact MDPs whose parameters fall with
those bounds. In particular, we have no prior over the exact MDPs in the family
of MDPs defined by a bounded parameter MDP.

Policy selection Despite the lack of information regarding any particular MDP,
we may have to choose a policy. In such a situation, it is natural to consider
that the actual MDP, i.e., the one in which we will ultimately have to carry out
some policy, is decided by some outside process. That process might choose so
as to help or hinder us, or it might be entirely indifferent. To minimize the risk
of performing poorly, it is reasonable to think in adversarial terms; we select
the policy which will perform as well as possible assuming that the adversary
chooses so that we perform as poorly as possible.

These choices correspond to optimistic and pessimistic optimal policies. We
have discussed in the last section how to compute interval value functions for
such policies—such value functions can then be used in a straightforward manner
to extract policies which achieve those values.

There are other possible choices, corresponding in general to other means of
totally ordering real closed intervals. We might for instance consider a policy
whose average performance over all MDPs in the family is as good as or better
than the average performance of any other policy. This notion of average is
potentially problematic, however, as it essentially assumes a uniform prior over
exact MDPs and, as stated earlier, the bounds do not imply any particular prior.

Sensitivity analysis There are other ways in which bounded parameter MDPs
might be useful in planning under uncertainty. For example, we might assume
that we begin with a particular exact MDP, say, the MDP with parameters whose
values reflect the best guess according to a given domain expert. If we were to
compute the optimal policy for this exact MDP, we might wonder about the
degree to which this policy is sensitive to the numbers supplied by the expert.

To explore this possible sensitivity to the parameters, we might assess the
policy by perturbing the parameters and evaluating the policy with respect to
the perturbed MDP. Alternatively, we could use BMDPs to perform this sort of
sensitivity analysis on a whole family of MDPs by converting the point estimates
for the parameters to confidence intervals and then computing bounds on the
value function for the fixed policy via interval policy evaluation.

Aggregation Another use of BMDPs involves a different interpretation altogether.
Instead of viewing the states of the bounded parameter MDP as individual prim-
itive states, we view each state of the BMDP as representing a set or aggregate
of states of some other, larger MDP.

In this interpretation, states are aggregated together because they behave
approximately the same with respect to possible state transitions. A little more
precisely, suppose that the set of states of the BMDP M corresponds to the set




of blocks {Bj,...,B,} such that the {B;} constitutes the partition of another
MDP with a much larger state space.
Now we interpret the bounds as follows; for any two blocks B; and Bj, let

Fp.p ; () represent the interval value for the transition from B; to B; on action a

defined as follows: Fp,p, () = [minpeg_, Y een; Frola), maxpen, D oep; qu(a)]
Intuitively, this means that all states in a block behave approximately the same
(assuming the lower and upper bounds are close to each other) in terms of
transitions to other blocks even though they may differ widely with regard to
transitions to individual states.

In Dean et al. [1997] we discuss methods for using an implicit representation
of a exact MDP with a large number of states to construct an explicit BMDP
with a possibly much smaller number of states based on an aggregation method.
We then show that policies computed for this BMDP can be extended to the
original large implicitly described MDP. Note that the original implicit MDP
is not even a member of the family of MDPs for the reduced BMDP (it has a
different state space, for instance). Nevertheless, it is a theorem that the policies
and value bounds of the BMDP can be soundly applied in the original MDP
(using the aggregation mapping to connect the state spaces).

7 Related Work and Conclusions

QOur definition for bounded parameter MDPs is related to a number of other
ideas appearing in the literature on Markov decision processes; in the follow-
ing, we mention just a few such ideas. First, BMDPs specialize the MDPs with
imprecisely known parameters (MDPIPs) described and analyzed in the op-
erations research literature[White and Eldeib, 1994, White and Eldeib, 1986,
Satia and Lave, 1973]. The more general MDPIPs described in these papers re-
quire more general and expensive algorithms for solution. For example, [White
and Eldeib, 1994] allows an arbitrary linear program to define the bounds on the
transition probabilities (and allows no imprecision in the reward parameters)—
as a result, the solution technique presented appeals to linear programming at
each iteration of the solution algorithm rather than exploit the specific structure
available in a BMDP. [Satia and Lave, 1973} mention the restriction to BMDPs
but give no special algorithms to exploit this restriction. Their general MDPIP
algorithm is very different from our algorithm and involves two nested phases
of policy iteration—the outer phase selecting a traditional policy and the inner
phase selecting a “policy” for “nature”, i.e., a choice of the transition parameters
to minimize or maximize value (depending on whether optimistic or pessimistic
assumptions prevail). Our work, while originally developed independently of the
MDPIP literature, follows similar lines to [Satia and Lave, 1973] in defining
optimistic and pessimistic optimal policies.

Bertsekas and Castafion [1989] use the notion of aggregated Markov chains
and consider grouping together states with approximately the same residuals.
Methods for bounding value functions are frequently used in approximate algo-
rithms for solving MDPs; Lovejoy [1991) describes their use in solving partially



observable MDPs. Puterman [1994] provides an excellent introduction to Markov
decision processes and techniques involving bounding value functions.

Boutilier and Dearden [1994] and Boutilier et al. [1995b] describe methods for
solving implicitly described MDPs and Dean and Givan [1997] reinterpret this
work in terms of computing explicitly described MDPs with aggregate states.

Bounded parameter MDPs allow us to represent uncertainty about or vari-
ation in the parameters of a Markov decision process. Interval value functions
capture the resulting variation in policy values. In this paper, we have defined
both bounded parameter MDP and interval value function, and given algorithms
for computing interval value functions, and selecting and evaluating policies.
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Abstract

Sampling is an important tool for estimating
large, complex sums and integrals over high-
dimensional spaces. For instance, importance
sampling has been used as an alternative to exact
methods for inference in belief networks. Ideally,
we want to have a sampling distribution that pro-
vides optimal-variance estimators. In this paper,
we present methods that improve the sampling
distribution by systematically adapting it as we
obtain information from the samples. We present
a stochastic-gradient-descent method for sequen-
tially updating the sampling distribution based on
the direct minimization of the variance. We also
present other stochastic-gradient-descent meth-
ods based on the minimization of typical notions
of distance between the current sampling distri-
bution and approximations of the target, optimal
distribution. We finally validate and compare the
different methods empirically by applying them
to the problem of action evaluation in influence
diagrams.

1 INTRODUCTION

Often, we are interested in computing quantities involving
large sums, such as expectations in uncertain, structured
domains. For instance, belief inference in Bayesian net-
works (BNs) requires that we sum or marginalize over the
remaining variables that are not of interest. Similarly, in
order to solve the problem of action selection in influence
diagrams, we sum over the variables that are not observed
at the time of the decision in order to compute the value of
different action choices.

We can represent the uncertainty in structured environ-
ments using a BN. A BN allows us to compactly define
a joint probability distribution over the relevant variables
in a domain. It provides a graphical representation of the

Leslie Pack Kaelbling
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139 USA
lpk@ai.mit.edu

distribution by means of a directed acyclic graph (DAG).
1t defines locally a conditional probability distribution for
each relevant variable, represented as a node in the graph,
given the state of its parents in the graph. This decomposi-
tion can help in the evaluation of the sums. However, due
to factors regarding the connectivity of the graph, in gen-
eral this is not sufficient to allow an efficient computation
of the exact value of the sums of interest.

Sampling provides an alternative tool for approximately
computing these sums. Sampling methods have been pro-
posed as an alternative to exact methods for such problems.
In particular, importance sampling (see Geweke [1989],
and the references therein) has been applied to the prob-
lem of belief inference in BNs [Fung and Chang, 1989,
Shachter and Peot, 1989] and action selection in IDs (see
Charnes and Shenoy [1999] and the references therein,
and Ortiz and Kaelbling [2000]). In its simpler form, the
importance-sampling distribution used is the “prior” dis-
tribution of the BN resulting from setting the value of the
evidence. It has been noted early on that this sampling dis-
tribution is far from optimal in the sense that it provides es-
timates with larger variance than necessary [Shachter and
Peot, 1989]. For instance, the optimal sampling distribu-
tion in the case of belief inference is to sample the unob-
served variables from the posterior distribution over them
given the observed evidence. If we knew this distribution
we would know the answer to the belief inference problem.

Several modifications have been proposed to improve the
estimation of the simple importance sampling distribu-
tion discussed above, based on information obtained from
the samples [Fung and Chang, 1989, Shachter and Peot,
1989, Shwe and Cooper, 1991]. In this paper, we pro-
pose methods to systematically and sequentially update the
importance-sampling distribution. We view the updating
process as one of learning a separate BN just for sampling.
The learning objective is to minimize some error criterion.
A stochastic-gradient method results from the direct min-
imization of the variance of the estimator with respect to
the importance sampling distribution as an error function.
Other stochastic-gradient methods result from minimizing



error functions based on typical measures of the notion of
distance between the current sampling distribution and ap-
proximations of the optimal sampling distribution.

2 DEFINITIONS

We begin by introducing some notation used throughout
the paper. We denote one-dimensional random variables
by capital letters and denote multi-dimensional random
variables by bold capital letters. For instance, we de-
note a multi-dimensional random variable by X and de-
note all its components by (X3,... ,Xy) where X; is the
it* one-dimensional random variable. We use small let-
ters to denote assignments to random variables. For in-
stance, X = x means that for each component X; of X,
X; = z;. We denote the set of possible values that X; can
take by Qx, and the set of possible values that X can take

by Qx = X, Qx,. We also denote by capital letters the
nodes in a graph. We denote by Pa(Y") the parents of node
Y in a directed graph.

We now introduce notation that will become useful dur-
ing the description of the methods presented in this pa-
per. We denote by the operator 3, the sum over
the possible values of the individual variables forming
Z, 3.5 32, "'EZ..I' For any function h with vari-
ables Z and O, the expression h(Z,0)|,.., stands for
a function f’ over variables Z that results from setting
the values of O in h with assignment o while letting
the values for Z remain unassigned. In other words,
f(Z)=h(Z,0)\o_, = MZ,0 = o). The notation
X = (Z,0) means that the variable X is formed by
all the variables that form Z and O. That is, X =
(X1y--- s Xn) =(Z1y.-+ yZn;,01,...,0n,) = (Z2,0),
where n = n; + ny. Note that we are assuming that the set
of variables forming Z and those forming O are disjoint.
The notation Z ~ f means that the random variable Z is
distributed according to probability distribution f.

A Bayesian network (BN) is a graphical probabilistic model
used to represent uncertainty in structured domains. It com-
pactly represents the joint probability distribution over the
relevant variables of the system of interest. It uses a di-
rected acyclic graph (DAG) to represent the relationship
between the relevant variables. A node in the graph rep-
resents a variable. The model defines a local conditional
distribution P(X; | Pa(X;)) for each node or variable X;
given its parents Pa(X;) in the graph. The joint distribution
is then

P(X) =[[i=; P(Xi | Pa(Xy)).
For instance, we can define a BN on the graph given in
Figure 1(a).

The inference problem in BNs is that of computing the pos-
terior probability of an assignment to a subset of variables

Xy

X2 X3
X3 Xs Xe X7

(a)

X1
X X3
X7
X4 Xs
A U
(®)

Figure 1: Example of (a) Bayesian network and (b) influ-
ence diagram.

given evidence about another subset of variables in the sys-
tem. Assume that the variables are discrete and their sam-
ple spaces or the possible values each variable can take are
finite. In general, let X = (Z,0) where O is the set of
variables of interest, o is an assignment to it and Z are the
remaining variables. For this problem we want to compute
probabilities of the kind

P(O=0)=% ,P(Z,0 = o).

Often, the local decomposition of the joint distribution still
leads to the evaluation of sums over a large number of
variables. In general, this problem is intractable [Cooper,
1990].

An influence diagram (ID) is a probabilistic model for
decision-making under uncertainty. We can think of an ID
as a BN with decision and utility nodes added. For instance,
we can use our example BN to build an ID as shown in Fig-
ure 1(b). The square is a decision node. The diamond is a
utility node. We now have potentially different joint distri-
butions over the variables, for each action choice available.
Assume for simplicity that there is a single decision node
in the graph. The joint distribution over the variables, given
the action choice a assigned to the decision variable, is

P(X|A=a)= H?=1 P(X; | Pa(Xi))|A=a'

The decision associated with a decision node is a function
of its parent nodes in the graph. We will have access to



the value of these variables at the time of making the deci-
sion. Similarly, the utility associated with a utility node is
a function of its parent nodes in the graph.

Assume that we have a finite number of discrete action
choices. Then, one problem is to select the best strategy or
function 7* mapping each possible value of the parents of
the decision node to an action choice. The best strategy is
the strategy with highest expected utility. Let X = (Z, O)
where the variables in O are parents of the decision node
and Z are the remaining variables. The problem of ob-
taining an optimal strategy reduces to obtaining, for each
assignment O = o, the action that maximizes the value
associated with the action and the assignment:

Vola) =3, P(Z,0=0|A=0a)U(Z,0 =0,A=a).

Note once again that computing this value requires the eval-
uation of a sum. For the same reasons as in the previous
problem of belief inference in BNs, the exact computation
of this value is intractable in general.

3 IMPORTANCE SAMPLING

Importance sampling provides an alternative to the exact
methods for evaluating sums. Let the quantity of inter-
est be G = Y 5g(Z) for some real function g. We
can turn the sum into an expectation by expressing G =
>z f(Z)(g(Z)/f(Z)), where f is a probability distribu-
tion over Z satisfying, for all Z, g(Z) # 0 = f(Z) # 0.
We call f the importance-sampling distribution. We de-
fine the weight function w(Z) = g(Z)/f(Z) which al-
lows us to express G = Y, f(Z)w(Z). Hence, we can
obtain an unbiased estimate of G by obtaining N samples
zW, ...,z from Z ~ f and computing the estimate

G=1YTN wizh) o)

We can apply this technique to the problem of belief infer-
ence in BNs. Typically, we let

9(2)=P(Z,0 = o)

=I12%, P(Z: | Pa(Z) T2, P(O; | Pa(0)))] __

H2) =
w(Z) =

122, P(Z: | Pa(Z:))| o, » Which implies
152, P(O; | Pa(0)| ,_,-

Note that we are defining the importance sampling distri-
bution to be the “prior” distribution of the BN. We obtain
samples from this distribution by sampling the variables
in the (partial) order defined by the DAG and according
to the local conditional distribution of the original BN for
each variable. As we obtain samples from each variable by
traversing the nodes in the graph and sampling the variable
corresponding to it, if we get to a node or variable that is in
the evidence set O, we do not sample it. Instead, we assign

to it the value given by the evidence assignment o. There-
fore, the resulting samples will be assignments to those
variables that are not in the evidence set according to the
“prior” distribution of the BN. We call the method resulting
from this importance-sampling distribution the traditional
method. In the context of belief inference, this method is
called likelihood-weighting (LW) since the weight function
is a “likelihood” and thus each sample is weighted by its
“likelihood.”

We can similarly apply this technique in the context of ac-
tion selection in IDs to evaluate V,(a). In general, we let

9(Z) = P(Z,0=0|4A=0a)U(Z,0=0,A=ua),
f(Z) = H?——l-l P(Z‘ l Pa(Z‘i))‘O=o,A=a ’
w(2) = T2 PO; |Pa0)V(Z,0,4) .

In particular, for our example,

9(2) = P(X1)P(Xz | X1)P(X3|X1) x

P(Xe | X2,A=a)P(X7| X3, Xe6) X
P(X4 =4 ' Xz)P(Xs =Ty | Xz,X3) X
U(X7,A =a),

P(X31)P(X, | X1)P(X3 | X1) x

P(Xs | X2,A = a)P(X7 | Xs,XG),
P(X4 = T4 I Xg)P(Xs =I5 | Xz,Xs) X
U(X7,A =a).

An important property of the estimator @ is the variance of
the weights associated with the importance-sampling dis-
tribution. This is

Varlw(2)] = £ £(Z)w(2)? - G2,

Recall that G = ), g(Z) by definition and assume that
g is a positive function. From this we can derive that the
optimal or minimum-variance importance-sampling distri-
bution is proportional to g(Z):

(2)=9(Z)] ¥z 9(2). 2

The weights will have zero variance in that case, since the
weight function will always output our value of interest
G. We also note that we need to avoid letting f(Z) be
too small with respect to g(Z), since this will increase
the variance. As a matter of fact, Varfw(Z)] — oo as
f(Z) — 0 for at least one value of Z. This implies that
we should use importance-sampling distributions with suf-
ficiently “fat tails.”

4 ADAPTIVE IMPORTANCE SAMPLING

The traditional method presented above uses as the
importance-sampling distribution the “prior” distribution



of the BN which can be far from optimal in the sense that
it can have higher variance than necessary. In the case of
evaluating actions in IDs, it also completely ignores poten-
tially useful information about the utility values. Therefore,
we try to learn the optimal importance-sampling distribu-
tion by adapting the current sampling distribution as we
obtain samples from it.

We view the adaptive process as one of learning a distribu-
tion over the variables the sum is over to use specifically as
an importance-sampling distribution. In particular, we can
view this process as learning BNs from the samples just for
sampling. From the expression of the optimal importance-
sampling distribution given in equation 2 (and, in particu-
lar, from the factorization of the function g for the different
estimation problems), we can deduce that in order to be
able to represent this distribution graphically using a BN
we need to add arcs that connect every pair of nodes that
are parents of observations and/or utility nodes, if they are
not already connected. However, doing so can increase the
size of the model, particularly in cases where the local con-
ditional probabilities and the utilities have a smaller, more
compact parametric representation (i.e., noise-or’s). In this
paper, we do not deal with this issue and instead concen-
trate on the problem of learning a BN with the same struc-
ture as the original BN (or ID). Hence, we only need to
update the local conditional probability distributions as we
obtain samples.

We can parameterize the importance-sampling distribution
using a set of parameters ©. Let the indicator function
I(Z; = k,Pa(Z;) = j | Z) = 1if the condition Z; = k
and Pa(Z;) = j agrees with the value assigned to Z; 0
otherwise. Then, we can express the importance-sampling
distribution as

rzie=11 11

i=13j€0pa(z;) keQz;

QI(Z,_k JPa(Z;)= J]Z)
H ijk

3

where for each 4, j, k, 8;;x = P(Z; = k | Pa(Z;) = j,©).
Hence, for all 4,7, >, 0ijx = 1, and for all k, ;1 > 0.
Note that this representation uses the assumptions of global
and local parameter independence typically used in BNs.
The weight function is also parameterized and defined as
w(Z | ©)=g(2)/f(Z]8).

4.1 LEARNING CRITERIA AND UPDATE RULES

In the following subsections we present different methods
for updating the sampling distribution. The update rules
are all based on gradient-descent. Hence, at each time ¢,
we update the parameters as follows:

0t — 1) — a(t)Vre(6™). @)

In the update rule above, a(t) denotes the learning rate or
the step size rule and VPe(©) denotes the gradient of error

function e, appropriately projected to satisfy the constramts
on ©. The methods differ in how they define V?e(0 )y,

In the discussion below we denote the N(t) i.i.d. samples
as z®D ... z®N®) drawn according to Z ~ f(Z |
6®). If we gather samples to estimate G using many dif-
ferent sampling distributions, how can we combine them
to get an unbiased estimate? It is sufficient to weight them
using any weighting function that is independent of the sub-
estimates obtained by using just the samples for one sam-
pling distribution. For instance, the estimator

G = ZL, WHGe©), 5)
where 7 LW (t)=1and W(t) > 0, forall ¢, and

6(0Y) = gg TV w0 169), ©

is unbiased as long as W(t) and C:'(G(t)) are independent
for each t. Letting W(t) = 1/T will produce an unbi-
ased estimate. This is the weight we use in the experi-
ments. In general, we would like to give more weight to
importance-sampling distributions with smaller variances.
Assuming that the variance decreases with ¢, we would like
W (t) to be an increasing sequence of ¢. Note that using
W (t)  1/62, where &7 is the sample variance at time t,
though appealing, does not  necessarily lead to an unbiased
estimator since W (t) and G(6) are not independent.

We will consider three general strategies: minimizing vari-
ance directly, minimizing distance to global approxima-
tions of the optimal sampling distribution, and minimizing
distance to the empirical distribution of the optimal sam-
pling distribution based on local approximations. For the
first two strategies, we will find that we can express the
partial derivatives that form the gradient as, for all 4, j, k,

Oe(®) ~1(Z;=k,Pa(Z,)=j|2Z
B0,5 ol =%, S Z|9[ ! ‘.jf )=41Z)
»(Z,8)],

where p(Z, ©) is a function that depends on the error func-
tions. Note that this is an expectation. Then, the methods
update the parameters by estimating the value of the partial
derivatives evaluated at the current setting of the parame-
ters 8 as

AR N() | 21(Zi=kPa(Z)=i|Z=2"")

iik = (t
69,Jk N(t) 1 oij;:

(2D, e(i))] )

4.1.1 Minimizing Variance Directly

As we noted above, the optimal importance-sampling dis-
tribution for estimating G is that which minimizes the
variance of w. Using that as our objective, we derive a
stochastic-gradient update rule for the parameters of the



importance-sampling distribution. Let the error function
be

eVar(e) = Var(w(z I 9))
= Yzf(Z|OWw(Z|0) -

The corresponding function for the gradient is
evar(Z,0) =w(Z | ©)2 ¢)

Note that using this definition of ¢ yields an unbiased es-
timate of the gradient. This is because the gradient is the
expectation of a particular function and, in this case, we can
always evaluate the function exactly. Hence, we can obtain
an unbiased estimate by sampling from f(Z | ©).

4.1.2 Minimizing Variance Indirectly via
Approximate Global Minimization

Recall the optimal importance-sampling distribution f* for
estimating G given in equation 2. The update rules of the
following subsection are all motivated by the idea of reduc-
ing some notion of distance between the current sampling
distribution and this optimal sampling distribution. Note
that we cannot really compute the values of the optimal dis-
tribution since that requires knowing the normalizing con-
stant 3, g(Z) = G which is exactly the value we want
to estimate. We approximate the optimal distribution using
the current estimate of G as follows

f1(2) = 9(2)/G®. ®

In the following, we will consider four error functions, one
based on the sum-squared-error and three based on versions
of the Kullback-Leibler divergence.

If we use the Ly norm or sum-squared-error function as a
notion of distance between the distributions, then the error
function is

e1, (@) = § 2 (£(21©) - 1(2))".
The corresponding function for the gradient is
vL,(Z,8) = f*(Z)-1(Z]©)
~ f(zt)]6®) x
(w(z9 | 69)/6® -1), ©)
where the approximation results from using f*(Z) as de-
fined in equation 8 as an approximation to f*(Z).

An alternative, commonly-used notion of distance between
two probability distributions is given by the Kullback-
Leibler (KL) divergence. This measure is not symmetric.
One version of the KL divergence in this context is given
by the error function

ek, (©) =3 7 *(Z)log (f*(2)/f(Z | ©)).

The corresponding function for the gradient is

vkL,(Z,0) = f*(Z)/f(Z]|6)
~ w(z®)|e®)/Gn.  (10)

Another version of the KL divergence is given by the error
function

ek, (@) =3 7 f(Z | ©)log(f(Z | ©)/f*(Z)) .

The corresponding function for the gradient is
vx1,(Z,0) =log (f*(2)/1(Z | ©)) -1
~ log (w(z(t”) | O(t))/é(t)) —-1. (11

A “symmetrized” version of KL sometimes used is given
by the error function

exL, (©) = 3exr, (©) + FekL,(©).

‘We can obtain the partial derivatives for this error function
and their approximation accordingly.

4.1.3 Heuristic Local Minimization Based on
Empirical Distribution

The update methods in this subsection are motivated by the
idea of minimizing different notions of distance between
the current sampling distribution and an empirical distribu-
tion of the optimal importance-sampling distribution that
we build from the samples. The hope is that the empirical
distribution is a good approximation of the optimal sam-
pling distribution. We define the empirical distribution, pa-
rameterized by 6 locally as follows: for all 4, 7, k,

60— ZiQ) I(Zi=k,Pa(Zi)=j|Z=z*D)u(z*D 6®)
kT T I(Pa(Z:)=41Z=2*D)u(zD]6®)

if YD I(Pa(Zs) = j | Z = 200)w(zD | §9) £ 0;
0'(20 G(t) otherwise. We are essentially defining the em-
pirical dlstrlbutlon using the samples if there are samples
that can be used to define it; otherwise, we revert to the
current distribution. We try to minimize the distance be-
tween the current sampling distribution and the empirical

distribution locally.

12)

Similar to the case of the previous strategies, we will find
that we can express the partial derivatives that form the gra-
dient of the error functions discussed in this subsection as,
for all , 7, k,
8¢'(©) 7
55 = — ¢ (Bijk, Bijic),

where ¢'(8;jx, 8i;x) is a function that depends on the error
functions. Then, the methods update the parameters by es-
timating the value of the partial derivatives evaluated at the
current setting of the parameters 89 as

M} — /(g(t) e(t))

30,‘,';, ijk? ijk



We define the local La-norm error function as
ei,z(@) = % Ei,j,lc (oijk - éijk)2 )
the error function for one version of KL as
ek1 (©) = X ; 1 bijx log (éijk/ 9ijk) )
and the other as
ekLz(G) = Zi,j,k 6;jx log (Gijk/éijk) .

From this we obtain the corresponding functions for the
gradient:

a

bijk — Oijk,
0iik /i,
log (éijk/gijk) —-1.

We can obtain an update rule based on the “symmetrized”
version of KL accordingly.

L, (Bijr, 0:52) =
PKL, (Bijk, Oijk) =

©kL, (Bijk, bijk) =

4.2 DISCUSSION OF UPDATE RULES

First, note that of all the update rules, only the one derived
for ey, clearly uses an unbiased estimate of the gradient. It
is not immediately apparent whether the update rules based
on er,, ekL, and ey, use unbiased estimates.

Note also that the magnitude of the components of the re-
sulting gradients are different, as suggested by their respec-
tive  functions. The function ¢v,, has magnitude propor-
tional to the squares of the weights. The magnitudes of ¢,
and @ki, are linear in the weights. However, the magni-
tude of ¢, is potentially smaller since it has the probabil-
ity of the sample as a factor. The magnitude of ¢k, is
logarithmic in the weights.

Because we assume that g is positive, the weights are pos-
itive. Hence, ¢var and ¢k, are always positive. The
function ¢y, is positive if w(Z | @)/G > 1. Similarly,
the function ¢k, is positive if log(w(Z | ©)/G) > 1.
If w(Z | ®) > G then the sampling distribution under-
estimates the value of g while if w(Z | 8) < G then it
overestimates the value. Therefore, the sign of ¢r, and
KL, depends on whether we under- or over-estimated the
value of g. Similarly, the magnitudes of Yvar, YL, ¥KL,»
and ¢k, are related to the amount of under- or over-
estimation. For ¢var, ¥L, and @k, the magnitude is larger
when the sampling distribution underestimates than when it
overestimates. For ¢k, the logarithm brings the amount
of over- and underestimation to the same scale. Note that
for the approximations of ¢r,, ¢KL,, and ¢kL,, G can-
not be zero, and in addition for ¢kL,, w(Z | @) cannot
be zero. These conditions hold from the assumption that g
is positive. Note that unless we constrain the importance-
sampling distribution, all the functions @var, ¥L,, ¢KL,
and ki, will be unbounded even if g is bounded.

The local Lo error function, e’Lz, leads to an update rule
for which the step size has a very intuitive interpretation
as a weighting between the current importance-sampling
distribution and the empirical distribution. In the case
of i, the update direction is proportional to the ratio
of the empirical distribution with respect to the current
importance-sampling distribution. On the other hand, for
ekL,» the update direction is proportional to the logarithm
of the same ratio. Note ki, is not defined if at least
one éf;}c = 0. We can fix this by letting, for each 14, j, k,
50 _ (S 1(Zi=k,Pa(2:)=31Z=2")w(z*D|6)) +6()
ik (ZXD 1(Pa(2)=31Z=2*D)u(xz*:D [6)) ) 41

This is essentially imposing a Dirichlet prior with parame-
ters equal to the current probability values on the empirical
distribution parameters.

We can interpret the update rules based on local KL-
divergence as adding weights to the elements of the domain
of the importance-sampling distribution and renormalizing.
For the version of KL-divergence with respect to the em-
pirical distribution, we are always adding weights. We add
values relative to the amount we underestimated or over-
estimated the magnitude of the distribution for a particu-
lar state. If we underestimated, we add weights larger than
one. If we overestimated, we add weights smaller than one.
For the other version of KL-divergence, due to the loga-
rithm function, we add weight if we underestimated while
we subtract weight if we overestimated. Therefore, the log-
arithm brings the amount of underestimation and overesti-
mation to the same scale and adds or subtracts weight ac-
cordingly.

Note that when approximating the gradients for evar, €L,,
exL, and exr,,, we can use as little as one sample to obtain
an estimate of the gradient (i.e., N(¢) = 1). This is not ad-
visable for the method based on the local heuristic since the
empirical distribution of the optimal sampling distribution
will be highly inaccurate. Hence, the update rules based on
the empirical distribution will work better when we take a
larger number of samples between updates. Finally, note
that whent = 1and N(t) = 1, L, = 0, and therefore, the
parameters will not change in the first iteration.

5 RELATED WORK

Different variations of importance sampling have been used
for the problems discussed in this paper (See Lin and
Druzdzel [1999] and the references therein). Our methods
belong to the class of forward samplers since they sam-
ple from a distribution based on the original structure of
the BN. Of these, self-importance sampling [Shachter and
Peot, 1989, Shwe and Cooper, 1991] is the method closest
to the methods proposed in this paper since it also updates
the sampling distribution as it obtains information from the
samples. This method has an update rule that is very sim-
ilar to the one derived for ej . It updates the distribution



after obtaining the empirical distribution, but the update is
a weighting between the empirical distribution and the first
sampling distribution used [Shwe and Cooper, 1991]. The
update rule is

4]
o (1 - )6, + ()5,
= 69 -

D (5o
a() a() _a( (t) z]k '

In our framework, we can think of this update rule as re-
sulting from the error function

CISIS(ev t) =

5&1(7) ‘J‘;( ik — ((1—-01(15))9,]}; +a(t)9ffi)) :

Annealed importance sampling [Neal, 1998] is a related
technique in that it tries to obtain samples from the opti-
mal sampling distribution. As we understand it, the user
sets up a sequence of distributions, the last distribution be-
ing the optimal distribution, typically defined by Markov
chains. We move from one distribution to another as we
“anneal” and the sequence converges to the optimal sam-
pling distribution. The hope is that we can get an inde-
pendent sample from that distribution, then we restart the
process to try to obtain another independent sample, and
so on. Finally, it uses those independent samples to obtain
an estimate. Notice that each “traversal” of the sequence
of distributions (or Markov chains) produces a single sam-
ple. The technique is very general and we are unaware of
whether it has been applied to the problems considered in
this paper. We are currently investigating possible connec-
tions between our methods and this technique.

6 EMPIRICAL RESULTS

We implemented all of the adaptive importance-sampling
methods described above. We let the learning rate a(t) =
B/t, where 8 is a value that depends on the updating
method. We need different values of § for the different
methods because of the differences in magnitude of their
gradients. We impose an additional constraint on the pa-
rameters which we call the e-boundary. We require that for
all 4,75, k, 056 > €(|Qx,|) = 7/ [9x.|, where v is a con-
stant factor. In our experiments, we let v = 0.1. We do
this so that our sampling distribution has “fat tails”, avoid-
ing extrema in probability and hence the possxblhty of in-
finite variance. We initialize the parameters 6© such that
the starting importance-sampling distribution is the “prior”
probability distribution of the original BN. However, if one
of the local conditional probability values does not satisfy
the e-boundary constraint, we change the distribution so
that it does.

U
A
MP, MPyy
MH; MHi4a
Dy D1
OS; OSt41

Figure 2: Graphical representation of the ID for the com-
puter mouse problem.

In order to satisfy the constraint that for all ¢, 7, Y, Oijx =
1, we project the approximation of the gradients onto the
simplex of the local conditional probability distribution.
We do so by letting, for all 4, j, k,

8rée(0)  9é(6) 1 |2x.| 2e(0)
3961:* 331’:‘* ~ Jax, | ~k=1 3;,-jk' (13)

Note that this is not enough to guarantee that after taking a
step in the projected direction, the parameters will remain
in the constraint space. If, when updating a local condi-
tional probability distribution, its respective parameters do
not satisfy the constraint, we find the minimum step o’ that
will allow them to remain inside the constraint space and
take a step of size o/2 along the gradient direction (i.e.,
half the distance between the current position of the param-
eter we are updating in the simplex and the closest point on
the e-boundary along the gradient direction).

We tested the methods on the computer mouse prob-
lem [Ortiz and Kaelbling, 2000], a simple made-up ID
shown in Figure 2. We added one to all the utility val-
ues presented in Ortiz and Kaelbling [2000] to make g
positive. We will consider the problem of obtaining the
value Vizp, (A) for the action A = 2 and the observation
MP, =1.

We evaluated each method by computing the mean-
squared-error (MSE) between the true value of the expec-
tation of interest (Vs p, (A)) and the estimate generated us-
ing the adaptive sampling method. The first results show
how the methods achieve better MSEs with fewer samples
for this problem. We only show results for those methods
that were the most competitive. We denote by “Var” the
method based on the minimization of the variance, and by
“L2 ™, “KL1”, and “KLS” the methods based on the global
minimization of Lo, KL; and KL, respectively. For the
update methods we use N(t) = 1 for all t. We take into
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Figure 3: Average mean squared error, over 40 runs, as a
function of the number of samples taken. We allow LW
twice as many samples.

account that the update methods have to traverse the graph
once every iteration to update the parameters relevant to the
sample taken. To compensate for this time, we allow the es-
timate based on LW to use twice as many samples. Figure 3
shows the results. The graph shows the average MSE over
40 runs as a function of the total number of samples taken
(times 2 for LW) by the methods. We note that Var and L2
achieve better MSEs than LW and converge to them faster.
With significance level 0.005 we can state (individually)
for each total number of samples N = 50,150, 250, that
Var and L2 (individually) are better with respect to MSE
than LW. Also, for N = 250, KLS is better than LW.

We also ran the methods with N(¢t) = 50, including the
local heuristic methods. They were only competitive after
a larger total number of samples (N > 150). Although fur-
ther analysis is necessary, we would like to convey some
general observations. We believe that in general there is a
tradeoff in the setting of N(t) and 8. We note that, of the
updates based on the two KL versions, KL1 typically per-
forms better than KL2. We believe this is because the error
function eky,, is defined with respect to the optimal sam-
pling distribution while ey, is with respect to the current
sampling distribution. KLS seems to perform better than
both. L2 is more stable than any of the other methods, sug-
gesting further theoretical analysis which we are currently
undertaking. Several possible reasons for this behavior are
(1) the variance of the gradient might be smaller than in
other cases, (2) the error function is bounded, and/or (3)
the error surface might be smoother than in other cases. We
conjecture that L2 converges to a stationary point of e, .

The second result shows that the update methods indeed
lead to importance-sampling distributions with smaller
variance relatively quickly for this problem. Figure 4
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Figure 4: Average of the true variance of the weight func-
tion, over 40 runs, as a function of the total number of sam-
ples taken.

shows a graph of the true variance of the sampling distribu-
tion learned using the different update methods as a func-
tion of the total number of samples used. The horizontal
line shows the variance associated with the sampling dis-
tribution used by LW (i.e., the “prior” distribution of the
original BN).

These experiments are all carried out on a single prob-
lem. Although they must clearly be extended to a variety
of larger problems, they indicate that adaptive importance-
sampling methods, particularly those that minimize vari-
ance and the Ly norm, can lead to significant improvements
in the efficiency of sampling as a method for computing
large expectations.
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Sampling Methods for Action Selection in Influence Diagrams
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Abstract

Sampling has become an important strategy for inference in
belief networks. It can also be applied to the problem of
selecting actions in influence diagrams. In this paper, we
present methods with probabilistic guarantees of selecting a
near-optimal action. We establish bounds on the number of
samples required for the traditional method of estimating the
utilities of the actions, then go on to extend the traditional
method based on ideas from sequential analysis, generating a
method requiring fewer samples. Finally, we exploit the intu-
ition that equally good value estimates for each action are not
required, to develop a heuristic method that achieves major
reductions in required sample size. The heuristic method is
validated empirically.

Introduction

The problem of decision-making involves the selection of
an optimal strategy. A strategy determines how we should
act based on observations or available information about the
variables of the system relevant to the decision problem.
Posed in the framework of decision theory, an optimal strat-
egy is one that maximizes our utility. The utility defines our
notion of value associated with the execution of actions and
the states of the system. The states result from the combina-
tion of the state of the individual variables in the system. In
the case of decision-making under uncertainty, we are un-
certain about both the state of the system and the result of
the actions we take. We express this uncertainty as proba-
bilities. Therefore, in this context an optimal strategy is one
that maximizes our expected utility.

In this paper our main interest is in decision problems un-
der uncertainty formulated as influence diagrams (ID). An
influence diagram is a graphical model that provides a com-
pact representation of (1) the probability distribution gov-
erning the states, (2) the structural strategy model represent-
ing how we make decisions, and (3) a utility model defining
our notion of value associated with actions and states. We
study the problem of selecting an optimal strategy in an in-
fluence diagram, concentrating on the case in which there is
only one decision to be made. This is because we can de-
compose the problem of multiple decisions into many sub-
problems involving single decisions (i.e., by using the tech-
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nique presented by Charnes & Shenoy (1999)). We note that
we can apply methods developed to solve IDs of this kind
to obtain methods to solve finite-horizon Markov decision
processes (MDPs) and partially observable Markov decision
processes (POMDPs) expressed as dynamic Bayesian net-
works (DBNs) (i.e., by modifying the technique presented
by Kearns, Mansour, & Ng (1999)).

The problem of strategy selection involves the sub-
problem of selecting an optimal action, from the set of action
choices available for that decision, for each possible obser-
vation available at the time of making the decision. There-
fore, we want to select the action that maximizes the ex-
pected utility for each observation. One way to do action
selection is to compute, exactly or approximately, the prob-
abilities of the sub-states of the system directly relevant to
our utility in order to evaluate the expected utility or value
of each action. A sub-state is formed from the state of a sub-
set of variables in the system. We believe this approach fails
to take advantage of an important intuition: it only matters
which action is best. Therefore, the problem of action selec-
tion is primarily one of comparing the values of the actions.
We combine this with the intuition that actions that are close
to optimal are also good. In this paper, we present meth-
ods for action selection in IDs that take advantage of these
intuitions to make major gains in efficiency.

Notation

Before we present the definition of the ID model, we in-
troduce some notation used throughout the paper. We de-
note one-dimensional random variables by capital letters and
denote multi-dimensional random variables by bold capi-
tal letters. For instance, we denote a multi-dimensional
random variable by X and denote all its components by
(X1,...,Xn) where X; is the i** one-dimensional random
variable. We use small letters to denote assignments to ran-
dom variables. For instance, X = & means that for each
component X; of X, X; = z;. We also denote by capi-
tal letters the nodes in a graph. We denote by Pa(Y’) the
parents of node Y in a directed graph.

‘We now introduce notation that will become useful during
the description of the methods presented in this paper. For
any function h with variables X and Z, the expression

h(Xa Z)|Z=z



stands for a function f’ over variables X that results from
setting the values of Z in h with assignment z while letting
the values for X remain unassigned. In other words,

X)=hX,2)|,_, =h(X,Z =2).

The notation Z = (S,S’) means that the variable Z is
formed by all the variables that form S and S’ Thatis, Z =
(Zl’ yZn ) = (Sl’ San ) = (S SI)

where n' = n; 4+ no. Note that we are assummg that the set
of variables forming S and those forming S’ are disjoint.
The notation Z ~ f means that the random variable Z is
distributed according to probability distribution f. We de-
note a sequence of samples from Z by z(), z(3) ..., where
2() is the i** sample. In this paper, we assume that the sam-
ples are independent.

Definitions

An influence diagram (ID) is a graphical model for decision-
making (See Jensen (1996) for additional information and
references). It consists of a directed acyclic graph along with
a structural strategy model, a probabilistic model and a util-
ity model. The graph represents the decomposition used to
compactly define the different models. Figure 1 shows an
example of a general graphical representation of an ID. The
vertices of the graph consist of three types of nodes: decision
nodes, chance nodes and utility nodes. Decision nodes are
square and represent the decisions or action choices in the
decision problem. Chance nodes are circular and represent
the variables of the system relevant to the decision problem.
Utility nodes are diamonds and represent the utility associ-
ated with actions and stzates. A state is an assignment to the
variables associated with the chance nodes of the ID.

Structural strategy model The structural strategy model
defines locally the form of a decision rule for each decision
node A;. This rule is a function of (a subset of) the infor-
mation available at the time of making that decision, which
is contained in its parents Pa(A;) in the graph, the decision
nodes that are predecessors of decision node A; in the graph
and their respective parents. The example ID of Figure 1 has
only one decision node. Denote a strategy for our example
model by 7, the state space or set of possible assignments
for the parents of the action node by 2pa(4) and the set of
possible actions 2 4. Then, a policy 7 : Qpa(a) — Q4.

Probability model The probability model compactly de-
fines the joint probability distribution of the relevant vari-
ables given the actions taken using a Bayesian network (BN)
(See Jensen (1996) for additional information and refer-
ences). The model defines locally a conditional probabil-
ity distribution P(X; | Pa(X;)) for each variable X; given
its parents Pa(X;) in the graph. This defines the following
joint probability distribution over the n variables of the sys-

tem, given that a particular action a is taken:

P(Xiy,...,Xp 1 A=a) = []in; P(Xi | Pa(Xi))| g=q -

%)
u)

Figure 1: General structure of ID we consider.

In our example ID, X = (S, S’, O) and, since there is only
one decision node, we can express P(X | A = a) as

P(X|A=a) = P(S,8,0|A=a)
P(S)P(S'|5,0,A=0a)P(0|8),

where
P(S) = TIZ,P(S:|Pa(Sy), (1)
P(S'|S,0,A=a) = H P(S]| Pa(S’))IA_aQ)
PO|S) = H P(O; | Pa(0,)) 3)

Utility model Finally, the utility model defines the utility
associated with actions resulting from the decisions made
and states of the variables in the system. The total utility
function U is the sum of local utility functions associated
with each utility node. For each utility node U;, the utility
function provides a utility value as a function of its parents
Pa(U;) in the graph. The total utility can be expressed as

U(X,A) = 312, Us(Pa(ly)). 4)

Note that we are using the label of the utility node to also
denote the utility function associated with it.

In this paper we assume that the variables and the deci-
sions are discrete and the local utilities are bounded. In ad-
dition, we concentrate on IDs with one decision node and the
general structure shown in Figure 1. The results in this paper
are still valid for more general structural decompositions of
the probability distribution. We use the structure given by
the ID in the figure to simplify the presentation. Also, the
results allow random utility functions.



Value of a strategy The value V™ of a strategy T is the
expected utility of the strategy:

V' = Yy P(X|A=n(0)U(X,A=n(0))

= YoXs >s P(S, s',0 | A=m(0))
U(S,8,0| A=n(0)).

The optimal strategy 7* is that which maximizes V™ over
all 7. We denote the value of the optimal strategy by V*.

Note that we can decompose this maximization into max-
imizations over the set of actions for each observation. For
each assignment to the observations o, we define the value
of an action a by

Vola) =Y s> s P(5,5,0=0| A=)
U(S,8,0=0|A=a). (5

Hence, the value of a strategy is V™ = 3 o Vo(7(O)).
Note that this is not the traditional definition of the value
of an action. We discuss below why we do not use the tradi-
tional definition.

If we denote by a* = 7*(0) the action that maximizes
Vo(a) over all actions a, then the value of the optimal strat-
egy is V* =3 o Vo(7*(0)) = 3o max, Vo (a). Hence,
the problem of strategy selection reduces to that of action
selection for each observation.

Exact methods exist for computing the optimal strategy
in an ID (See Charnes & Shenoy (1999) and Jensen (1996)
for short descriptions and a list of references). However,
this problem is hard in general. In this paper, we concen-
trate on obtaining approximations to the optimal strategy
with certain guarantees. Our objective is to find policies that
are close to optimal with high probability. That is, for a
given accuracy parameter €¢* and confidence parameter 6,
we want to obtain a strategy 7 such that V* — V* < €* with
probability at least 1 —§*. Note that given the decomposition
described above, if we obtain actions for each observation
such that their value is sufficiently close to optimal with suffi-
ciently high probability, then we obtain a near-optimal strat-
egy with high probability. That is, let ! be the number of pos-
sible assignments to the observations. If for each observa-
tion o we select action & such that V,(a*) —V,(d) < 2e with
probability at least 1 — &, where € = €*/(2l) and § = 6*/I,
then we obtain a strategy that is within €* of the optimal
with probability at least 1 — §*. Therefore, we concentrate
on finding a good action for each observation.

Typically the value of an action is defined as the condi-
tional expected utility of the action given an assignment of
the observations. If we denote this value by V(a | 0), we can
express the value of a policy as V™ = 3", P(O)V (7 (O) |
O). We do not use this definition because it is harder to
obtain estimates for V(a | o) with guaranteed confidence
bounds than it is to obtain estimates for V,(a).

Multiple Comparisons with the Best: Results

There are two important results from the field of mulri-
ple comparisons and in particular from the field of multi-
ple comparisons with the best that we take advantage of
in this paper. These results are based on the work of Hsu

(1981) (See Hsu (1996) for more information). Before we
present the results we introduce the following notation: de-
note z+ = max(z,0) and —z~ = min(0,z). The first
result is known as Hsu’s single-bound lemma, which is pre-
sented as Lemma 1 by Matejcik & Nelson (1995).
Lemmal Let pyy < ppy < -+ < p) be the (un-
known) ordered performance parameters of k systems, and
let fiay, b2y, - - -  fi(k) be any estimators of the parameters.
I

Prifigy = fa) — (ugey = k() > —w,i=1,...,k—1}
=l-a, (6
then

Pr{p; — max;z; pj € [—(il; — maX;p i —w)™,

(B — max;x; fi; +w)t], foralli} >1—a. (7)
If we replace the = in (6) with 2, then (7) still holds.
In our context, we let for each action a, the true value
pa = Vo(a) and the estimate fi, = V,(a). Also, the ith
smallest true value corresponds to ;). That is, if V5 (a1) <
Volag) < -+« < Vo(ax), then for all 4, puy = Vol(as).
Note that in practice, we do not know which action has
the largest value. In order to apply Hsu’s single-bound
lemma, we obtain the bound Pr{ji; — fi; — (u; — pi) >
—w, foralli # j} > 1 — a, for each action j, individu-
ally. This implies that Pr{iu) — f) — (b)) — K@) >
-w,i = 1,...,k— 1} > 1 — a, which allow us to ap-
ply the lemma. Figure 2 graphically describes this practi-
cal interpretation of the lemma. For each action i, individ-
ually, the upper bounds on the true differences, drawn on
the left-hand side, Vo (i) — Vo(j) < Vo(i) — Vo(j) + w,
for each j # i, hold simultaneously with probability at least
1 — a. The confidence intervals, EIrawn on the rigpt-hand
side, V‘Z(i) — maX;jx; Vg(j) € [-(Vo(i) — max;x; Vo(j) —
w) ™, (Vo (i) — max,x; Vo(4) +w)t], for each action ¢, hold
simultaneously with probability at least 1 — a..

The second result allows us to assess joint confidence in-
tervals on the difference between the value of each action
from the value of the best action when we have estimates of
the differences between value of each pair of actions with
different degrees of accuracy. The result is known as Hsu's
multiple-bound lemma. 1t is presented as Lemma 2 by Mate-
jeik & Nelson (1995), and credited to Chang & Hsu (1992).
Lemma 2 Let p(1y < pg) < -+ < k) be the (unknown)
ordered performance parameters of k systems. Let T;; be
a point estimator of the parameter y; — p;. If for each i
individually

Pr{Ti; — (ki — p3) > —wyj, forall j #i} =1 -, (8)
then we can make the joint probability statement

Pr{u; — max;y; p; € [D;,Df],foralli} >1—a, (9)
where Df = (min;[Ti; +wij))t, G = {{ : D} > 0},
and
D- = { 0 if G = {i}

i —(minjeg j#i[—Tjs — wji])~ otherwise.

If we replace the = in (8) with >, then (9) still holds.
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Figure 2: Graphical description for practical application of
Hsu’s single-bound lemma. Note that the “lower bounds” on
the left-hand side are —oo0.

Figure 3 presents a graphical description of this lemma.
Let, for all actions 4, D;” and D, be as defined in Hsu’s
multiple-bound lemma, with p; = V,(i) and for all j # i,
Tij = Vo(i) — Vo(4). For each action 4, individually, the
upper bounds on the true differences, drawn on the left-hand
side, Vo(2)—Vo (j) < T;j+w;;, foreach j # ¢, hold simulta-
neously with probability at least 1 —a. The confidence inter-
vals, drawn on the right-hand side, V,,(¢) — max;»; Vo(j) €
[D;, D], for each action i, hold simultaneously with prob-
ability at least 1 — a. Also, in this example, G = {1,2}. In
our context, G is the set of all the actions that could poten-
tially be the best with probability at least 1 — .. That is, for
each action a in G, the upper bound D7 on the difference of
the true value of action a and the best of all the other actions,
including those in G, is positive.

Estimation-based methods

One approach to selecting the best action is to obtain esti-
mates of V,,(a) for each a by sampling, using the probability
mode! of the ID conditioned on a, then select the action with
the largest estimated value.

We can apply the idea of importance sampling (See
Geweke (1989) and the references therein) to this estima-
tion problem by using the probability distribution defined by
the ID as the importance function or sampling distribution.
This is essentially the same idea as likelihood-weighting in
the context of probabilistic inference in Bayesian networks
(Shachter & Peot, 1989; Fung & Chang, 1989). We present
this method in the context of our example ID.

First, we present definitions that will allow us to rewrite
Vo(a) more clearly. First, let Z = (S, S’). Define the target

Upper bounds on: ’/ Vo( 1)- Vo(3)

}w13
V. (1)- VL(2) L
[} o
\

0 wif I
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Vo(2)- Vol .}

Vo Vo)
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Vo3)- may Vol@)
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Figure 3: Graphical description of Hsu’s multiple-bound
lemma. Note that the “lower bounds” on the left-hand side
are —oo.

Sfunction (in our case, the weighted utilities)
9a0(Z) = gaolS,5")
P(S)P(S'}8,0=0,A=a)-
P(O=0|S)U(S,S',0=0,A=a).
Note that Vo(a) = Y ga,0(Z). Define the importance
function as
fo,o(Z)=P(S)P(S' | S,0 =0,A=a). (10)
Define the weight function wa,o(Z) = ga,0(Z)/fa,0(Z).
Note that in this case,
We,0(Z)=PO=0|8S)U(S,5,0=0,A=a). (11)

Finally, note that V,(a) = 3_, fa,0(Z)(9a,0(Z)/ fa,0(Z)).
The idea of the sampling methods described in this section is
to obtain independent samples according to f, o, use those
samples to estimate the value of the actions, and finally se-
lect an approximately optimal action by taking the action
with largest value estimate. Denote the weight of a sample

2 from Z ~ fo 0 a8 W) = we o(2(). Then an unbiased

estimate of V,(a) is Vo(a) = N: - ZN,,, (%)

o
i=1 Wa,0-

Traditional Method

We can obtain an estimate of V,(a) using the straightfor-
ward method presented in Algorithm 1; it requires parame-
ters N, o that will be defined in Theorem 1.

This is the traditiona! sampling-based method used for
action selection. However, we are unaware of any result
regarding the number of samples needed to obtain a near-
optimal strategy with high probability using this method.



Algorithm 1 Traditional Method

Algorithm 2 Sequential Method

1. Obtain independent samples z(1), ... z(Na.0) from
Z~ fa,o~
2. Compute the weights wf,f.),, ceey w,(,],\g"").

3. Output V, (a) = average of the weights.

Theorem 1 Iffor each possible actioni=1,... , k, we es-
timate V,, (i) using the traditional method, the weight func-
tion satisfies l; o < wi o(Z) < Ui o, and the estimate uses

- (ui,o_li,o)z E
Nio= [——262 In 3

samples, then the action with the largest value estimate has
a true value that is within 2¢ of the optimal with probability
atleast 1 — 6.

Proof sketch. The proof goes in three basic steps. First,
we apply Hoeffding bounds (Hoeffding, 1963) to obtain a
bound on the probability that each estimate deviates from its
true mean by some amount €. Then, we apply the Bonfer-
roni inequality (Union bound) to obtain joint bounds on the
probability that the difference of each estimate from all the
others deviates from the true difference by 2¢. Finally, we
apply Hsu’s single bound lemma to obtain our result.

Note that we can compute /; , and u; o efficiently from
information local to each node in the graph. Assuming that
we have non-negative utilities, we can let

uio = [T} maxpaco,) P(O5 | Pa(0)loo]

o [Sies maxpawy U (PaUlom ani] » (12
Lo = [TT}2: minpao,) P(O5 | Pa(03))lo.,)

o [S7y minpaw,y Us(Pa(UiDlomg am] - (13)
However, these bounds can be very loose.

Sequential Method

The sequential method tries to reduce the number of samples
needed by the traditional method, using ideas from sequen-
tial analysis. The idea is to first obtain an estimate of the
variance and then use it to compute the number of samples
needed to estimate the mean. The method, presented in Al-
gorithm 2, requires parameters N, , and N/, that will be
defined in Theorem 2.

Note that given the sequential nature of the method, the
total number of samples is now a random variable. We also
note that while multi-stage procedures of this kind are com-
monly used in the statistical literature, we are only aware
of results based on restricting assumptions on the distribu-
tion of the random variables (i.e., parametric families like
normal and binomial distributions) (Bechhofer, Santner, &
Goldsman, 1995).

Theorem 2 If, for each possible action i = 1,...,k, we
estimate V(1) using the sequential method, the weight func-

1. Obtain independent samples z(1), ..., 22N..) from
Z~ fa,o- ,
2. Compute the weights w,(,i),, ceeh w,(ff as0),

3.Forj=1,...,N; 5 lety; = (w.(,g,g—l) - w,(,?z;’)2/2.
4. Compute 62 , = average of y;’s.

5.Let Ny o =2N; , + Ng’,o(&ﬁ,o).

6. Obtain N;” ° (&2,.:) new independent samples

2@NaotD) | 2(Nao) from Z ~ fo o
1 ZNL D+1 a,o0
7. Compute the new weights wg,o ’ ), e ,w,(fz,' ),

8. Output v, (a) = average of the new weights.

tion satisfies l; o < w; o(Z) < Ui,0, 0?,0 = Var|w; o(Z)),

_ 1

r (ui,o—li70)4/3 2k
Ni,o—[ 9 02/3¢4/3 B |

and
\ 263 o + 2(ti0 = lio)e/3
Nio(630) = K o
C o] )4/3 2%
1/3 (o —lio)7Y | 2k
2 Y In 5|

then the action with the largest value estimate has a true
value that is within 2¢ of the optimal with probability at least
1 — 6. Also,

202, +2(ui0 — lio)e/3
N < ( o+ 250~ li)e/3

€2

5 (u,»,o - li,o)4/3 2k
-227 —64/3 In "5.— +1

2 1. )43
_ Ti0 (uz,o lz,o) k
= O(max(—62 o Y E R >1ng ,

with probability at least 1 — § /(2k), and
E[Ni,o] = 2Ni,,o + Ni,,,o(o'?,o)

2 1. )4/3
%50 (ut,o lio) _’E
= 0 (ma.x <_e2 i ln6 .

Proof sketch. The only difference from the proof of The-
orem 1 is the first step. Instead of using Hoeffding bounds
to bound the probability that each estimate deviates from
its true mean, we use a combination of Bernstein’s inequal-
ity (as presented by Devroye, Gyorfi, & Lugosi (1996) and
credited to Bernstein (1946)) and Hoeffding bounds as fol-
lows. We first use the Hoeffding bound to bound the prob-
ability that the estimate of the variance after taking some
number of samples 2N’ deviates from the true variance by
some amount €. We then use Bernstein’s inequality to
bound the probability that the estimate we obtain after taking
some number of samples N’/ deviates from its true mean by



€ given that the true variance is no larger than our estimate
of the variance plus €’. We then find the value of €’ (in terms
of €) that minimizes the total number of samples N” +2N"'.
The results on the number of samples follow by substituting
the minimizing €’ back into the expressions for N” and N'.
Steps 2 and 3 are as in Theorem 1.

The sequential method is particularly more effective than
the traditional method when 07, < (ui,0 — Li0)?.

Comparison-based Method

Using the results from MCB, we can compute simultaneous
or joint confidence intervals on the difference between the
value of V,(a) and the best of all the others for all actions a.
Therefore, MCB allows us to select the best action choice or
an action with value close to it, within a confidence level.

In the previous section we presented methods that require
that we have estimates with the same precision in order to
select a good action. Hsu’s multiple-bound lemma applies
when we do not have estimates of V,(a) for each a with the
same precision. Based on this result, we propose the method
presented in Algorithm 3 for action selection.

Algorithm 3 Comparison-based Method

1. Obtain an initial number of samples for each action a.
2. Compute MCB confidence intervals on the difference
in value of each action from the best of the other actions
using those samples.
while not able to select a good action with high certainty
do

3(a). Obtain additional samples.

3(b). Recompute MCB confidence intervals using total

samples so far.

We compute the MCB confidence intervals heuristically.
To do this, we approximate the precisions that satisfy the
conditions required by Hsu’s multiple-bound lemma (Equa-
tion 8) using Hoeffding bounds (Hoeffding, 1963). Using
this approach, for each pair of actions ¢ and j, and val-
ues lij o and u;j,0 such that l;; o < wio(Z) < uijo and

lijo € wjo(Z) L usj,0, We approximate w;; as

1/ 1 1 k-1
wij=(ui,-,o—lij,o)\£(Nio+N]_°>ln 5 , (14)

where N; o, is the number of samples taken for action ¢ thus
far. We then use these approximate precisions and the value-
difference estimates to compute the MCB confidence inter-
vals (as specified by Equation 9). There are alternative ways
of heuristically approximating the precisions but, in this pa-
per, we use the one above for simplicity.

Once we compute the intervals, the stopping condition is
as follows. If at least one of the lower bounds of the MCB
confidence intervals is greater than —2¢, then we stop and
select the action that attains this lower bound. Otherwise,
we continue taking additional samples.

We define the value of initial number of samples in our ex-
periments as 40. When taking additional samples, we use a
sampling schedule that is somewhat selective in that it takes

more samples from more promising actions as suggested by
the MCB confidence intervals. We find the action whose
corresponding MCB confidence interval has an upper bound
greater than O (i.e., from the set G as defined in Hsu’s multi-
ple bound lemma) and whose lower bound is the largest. We
take 40 additional samples from this action and 10 from all
the others. We understand that these sample sizes are very
arbitrary. Potentially, other setting of these sample sizes can
be more effective but we did not try to optimize them for our
experiments. Algorithm 4 presents a detailed description of
the instance of the method we used in the experiments.

Algorithm 4 Algorithmic description of the instance of the
comparison-based method used in the experiments.

for each observation o do

<1

for each actioni =1,...,k do
Compute u; o, and l; , using equations 12 and 13,
respectively.

D « —o0; N,.(fg — 40; N; o — 0; V, (i) « 0.
for each pair of actions (¢, j), ¢ # j do
Uijo + Max(Ui,o, Uj.0)i lijo max(li 0, lj,o0)-
while there is no action ¢ such that D] > —2e do
for each action i do
Obtain N samples z(MiotD) ..

,0
from Z ~ f; o, as in equation 10.

Compute weights wf.N"’°+l),

) Q)
2 WaotNED)

1
(Ni,o+N)

o o VD (Nt
V(i) — (NioVo i)+ 5555 winee ) /(N o+
NO).

Nio « Nio+ N,

for each pair of actions (¢, j), ¢ # j do
Tij « Vo(i) = Vo(5); Tji — —Ti;-
Compute w;; using equation 14; wj; « w;;.

for each action i do
Compute D}, G, and D; using Hsu’s multiple-
bound lemma.

for each action i do
if D] == max;eg D; then N5 « 40
else No « 10.

l—14+1.

#(0) « argmax; D] .

Although this method may seem well-grounded, we are
not convinced that the bounds hold rigorously. The preci-
sions are correct if the samples obtained so far for each ac-
tion are independent. However, this might not be the case,
since the number of samples gathered on each round de-
pends on a property of the previous set of samples (that is,
that the lower-bound condition did not hold). It is not yet
clear to us whether the fact that the number of samples de-
pends on the values of the samples implies that the samples
must be considered dependent.



Related Work

Charnes & Shenoy (1999) present a Monte Carlo method
similar to our “traditional method.” One difference is that
they use a heuristic stopping rule based on a normal approx-
imation (i.e., the estimates have an asymptotically normal
distribution). Their method takes samples until all the esti-
mates achieve a required standard error to provide the cor-
rect confidence interval on each value under the assumption
that the estimates are normally distributed and the estimate
of the variance is equal to the true variance. They do not
give bounds on the number of samples needed to obtain a
near-optimal action with the required confidence. We refer
the reader to Charnes & Shenoy (1999) for a short descrip-
tion and references on other similar Monte Carlo methods
for IDs.

Bielza, Miiller, & Insua (1999) present a method based
on Markov-Chain Monte Carlo (MCMC) for solving IDs.
Although their primary motivation is to handle continuous
action spaces, their method also applies to discrete action
spaces. Because of the typical complications in analyzing
MCMC methods, they do not provide bounds on the number
of samples needed. Instead, they use a heuristic stopping
rule which does not guarantee the selection of a near-optimal
action. Other MCMC-based methods have been proposed
(See Bielza, Miiller, & Insua (1999) for more information).

Empirical results

We tried the different methods on a simple made-up ID.
Given space restrictions we only describe it briefly (See Or-
tiz (2000) for details). Figure 4 gives a graphical representa-
tion of the ID for the computer mouse problem. The idea is
to select an optimal strategy of whether to buy a new mouse
(A = 1), upgrade the operating system (A = 2), or take
no action (A = 3). The observation is whether the mouse
pointer is working (M P; = 1) or not (M P, = 0). The vari-
ables of the problem are the status of the operating system
(0S), the status of the driver (D), the status of the mouse
hardware (M H), and the status of the mouse pointer (M P),
all at the current ard future time (subscripted by ¢ and £ +1).
The variables are all binary.

The probabilistic model encodes the following informa-
tion about the system. The mouse is old and somewhat un-
reliable. The operating system is reliable. It is very likely
that the mouse pointer will not work if either the driver or
the mouse hardware has failed. Table 1 shows the utility
function U (M P;1, A) and the values of the actions and ob-
servations Vo (A4) computed using an exact method. From
Table 1 we conclude that the optimal strategy is: buy a
new mouse (A = 1) if the mouse pointer is not working
(M P, = 0); take no action (A = 3) if the mouse pointer is
working (M P, = 1). This strategy has value 26.50.

Table 2 presents our results on the effectiveness of the
sampling methods for this problem. We set our final de-
sired accuracy for the output strategy to €* = 5 and con-
fidence level §* = 0.05. This leads to the individual ac-
curacy 2¢ = 2.5 and confidence level § = 0.025 for
each subproblem. We executed the sequential method and
the comparison-based method 100 times. The comparison-

MP, MPq
MH, MH
D, Dy
0S; OS;41

Figure 4: Graphical representation of the ID for the com-
puter mouse problem.

U |4

Py MFE
A[O0[T[ O 1
T [0 |40 | 1820 | 6.60
2|5 (45| 754 | 739
3 /1050|1057 | 830

Table 1: This table presents the utility function and the
(exact) value of actions and observations for the computer
mouse problem.

based method produces major reductions in the number of
samples. When we observe the mouse pointer not working,
The comparison-based method always selects the optimal
action of buying a new mouse. When we observe the mouse
pointer working, The comparison-based method failed to se-
lect the optimal action of taking no action 4 times out of the
100. In those cases, it selected the next-to-optimal action
of upgrading the operating system (A = 2). This action
is within our accuracy requirements since the difference in
value with respect to the optimal action is 0.91.

The comparison-based method is highly effective in cases
where there is a clear optimal action to take. For instance,
in the computer mouse problem, buying a new mouse when
we observe the mouse not working is clearly the best option.
The differences in value between the optimal action and the
rest are not as large as when we observe the mouse working.

In this problem, the results for the sequential method
should not fully discourage us from its use, because the vari-
ances are still relatively large. We have seen major reduc-
tions in problems where the variance is significantly smaller
than the square of the range of the variable whose mean we
are estimating.

Summary and Conclusion

The methods presented in this paper are an alternative to
exact methods. While the running time of exact methods
depends on aspects of the structural decomposition of the



Method

A | MP; | Traditional | Sequential | Comp-based
1 0 2403 3802 (188) 335 (151)
2| 0 3007 2266 (142) | 115(37)
3 0 3679 2426 (129) 118 (39)
1 1 2213 2508 (178) | 521(216)
2 1 2794 2969 (201) 695 (421)
3 1 3443 3468 (202) | 1361 (560)

Total 17539 17438 (434) | 3145 (809)

Table 2: Number of samples taken by the different methods
for each action and observation. For the sequential and the
comparison-based methods, the table displays the average
number of samples over 100 runs. The values in parenthesis
are the sample standard deviations.

ID, the running time of the methods presented in this paper
depends primarily on the range of the weight functions, the
variance of the value estimators and the amount of separa-
tion between the value of the best action and that of the rest
(in addition to the natural dependency on the number of ac-
tion choices, and the precision and confidence parameters).
In some cases, we can know in advance whether they will
be faster or not. The methods presented in this paper can be
a useful alternative in those cases where exact methods are
intractable. How useful depends on the particular character-
istics of the problem.

Sampling is a promising tool for action selection. Our
empirical results on a small ID suggest that sampling meth-
ods for action selection are more effective when they take
advantage of the intuition that action selection is primarily
a comparison task. We look forward to experimenting with
IDs large enough that sampling methods are the only poten-
tially efficient alternative. Also, our work leads to the study
of adaptive sampling as a way to improve the effectiveness
of sampling methods (Ortiz & Kaelbling, 2000).
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Abstract

The focus of this work is the computation of efficient
strategies for commodity trading in a multi-market en-
vironment. In today’s “global economy” commodities
are often bought in one location and then sold (right
away, or after some storage period) in different mar-
kets. Thus, a trading decision in one location must
be based on expectations about future price curves in
all other relevant markets, and on current and future
storage and transportation costs. Investors try to com-
pute a strategy that maximizes expected return, usu-
ally with some limitations on assumed risk.

With standard stochastic assumptions on commod-
ity price fluctuations, computing an optimal strategy
can be modeled as a Markov decision process (MDP).
However, in general such a formulation does not lead
to efficient algorithms. In this work we propose a
model for representing the multi-market trading prob-
lem and show how to obtain efficient structured algo-
rithms for computing optimal strategies for a number of
commonly used trading objective functions (Expected
NPV, Mean-Variance, and Value at Risk).

Introduction

Investment is the act of incurring immediate cost in
the expectation of future reward. Investment options
represent various tradeoffs between risk and expected
profit. Investors try to maximize their expected re-
turn subject to the risk level that they are willing to
assume. Modern economics theory models the uncer-
tainty of future rewards as a stochastic process defining
future price curves. The process is typically Markovian,
thus investment decision can be modeled as a Markov
decision process (MDP) (Bellman 1957; Howard 1960;
Puterman 1994) where a state of the underlying process
needs only to include the current investment portfolio
and current prices. While the MDP gives a succinct for-
malization of the investment decision processes it does
not necessarily imply efficient algorithms for computing
optimal strategies. A challenging goal in this research
area is to characterize special cases of the general in-
vestment paradigm that are interesting enough from
the application point of view while simple enough to
allow efficiently computable analytic solutions.

We focus in this paper on commodity trading. Past
work has mainly dealt with single market trading prob-
lems (see (Dixit & Pindyck 1994; Hauskrecht, Pan-
durangan, & Upfal 1999) and the references there),
where commodity is bought, stored and eventually sold
at the same location. Here we address a more realistic
scenario in today’s “global economy”, that of a multi-
site trading problem where a commodity can be bought
in one location, stored at a second location and eventu-
ally sold at a third market. Prices at different locations
may be different, and they may have different future
price curves. Transportation costs also vary in time.
While there can be large gaps in spot prices in different
locations, future prices are more correlated - the fu-
ture price of the commodity at site X cannot be larger
than the price at site Y plus the cost of transportation
between Y and X. Trading in a “global economy” is sig-
nificantly more complex, since a local trading decision
must be based on expectations about future price curves
in all other relevant markets, as well as transportation
and storage costs.

Modeling the multi-site commodity trading as a
Markov decision process leads to a large state space,
and a large action space. Nevertheless, we show in this
work that under several commonly used trading util-
ity functions an optimal strategy can still be computed
efficiently.

A standard assumption in mathematical economics
is that commodity prices (e.g., oil and copper) are best
modeled as a mean reverting stochastic process (Dixit
& Pindyck 1994). In our case, prices in all locations
follow the mean reverting process but with different set
of parameters for different sites. To solve the trading
problem we first consider the ezpected net present value
(ENPYV) objective function, where the goal is to maxi-
mize expected gain with no consideration to risk. Un-
der this objective function the optimization problem
becomes myopic and can be computed by considering
only current and next step prices. This allows us to de-
sign global optimal portfolio allocation algorithms that
are polynomial in the number of sites in each trading
step.

Building on the myopic property of the ENPV objec-
tive function we extend the result to two commonly



used objective functions that combine ENPV maxi-
mization with limits on assumed risk at any one step.
In the Mean-Variance function the goal is to maximize
a weighted difference of the expected gain and the vari-
ance. The Value at Risk function maximizes expected
gain subject to a (probabilistic) limit on the possibility
of a large loss at any one step. Since both functions
include a term that is linear in the variance of the pro-
cess, the optimization problems in both cases lead to
a constrained quadratic optimization problem. How-
ever, the computational complexities of the two prob-
lems are different. The mean-variance function has a
particular structure that allows for polynomial time so-
lution. The complexity of the optimization problem
for the value at risk function varies, some special cases
have polynomial time solutions. To improve the com-
putational efficiency of both methods even further we
present structure-based algorithms exploiting the spe-
cial structure and regularities of the problem.

The Model

We consider investment problems with one type of com-
modity that is traded at n different sites. Once the com-
modidity is bought it can be either stored in each of the
locations or transported between any two locations.

Price model

We assume that trading occurs at discrete time steps.
To model commodity price fluctuations we adopt a dis-
crete time version of the mean-reverting model (Dixit
& Pindyck 1994):

where p is the long term average price of the commodity
i.e., a value to which the process reverts, 7 is the speed
of reversion and ¢*) is a sequence of independent ran-
dom variables following normal distribution N(0,o).?

Commodity prices at all locations follow mean revert-
ing processes, each with different parameters and with
possible correlations between their random components
€’s. Their combined fluctuations are fully described by
a multivariate normal distribution N(0, ), with a zero
mean vector and a covariance matrix £. We assume
that price movements are independent of our trading
activities. Also, there is no fee for trading and buy and
sell prices are the same.?

There are natural capacity constraints on the number
of commodity units we can transport (store) between

1We note that normally distributed random components
of the price process may lead to negative prices. One way to
deal with this issue is to use a geometric version of the mean
reverting process, where the logarithm of the price follows
the mean reverting model. However, the behavior of such
a model is quite different, and price curves of the standard
model are more realistic.

2In the more general setting (not considered here) prices
can also fluctuate based on our demand and supply for the
commodity or transportation service.

the two locations at any time step. However, there are
no constraints on buy and sell activities.

Valuation

Profit is measured by the standard ezpected net present
value (ENPV) (see e.g. (Brealey & Myers 1991;
Trigeorgis 1996)):

T
V™(s) = E)_7'mWm,s) (2)
t=0

where s denotes an initial state, 7 is the trading strat-
egy, ¥ = 1—_—}_7 is a discount factor, with r denoting the

interest rate (present cost of money), T is the decision

horizon, and m(?) is the cash flow at time ¢. We focus
primarily on problems with infinite horizon (T' = o0).

Markov decision process formulation of
the problem

A Markov decision process (MDP) (Bellman 1957;
Howard 1960; Puterman 1994) describes a stochastic
controlled process represented by a 4-tuple (S, A, T, R),
where S is a set of process states; A is a set of ac-
tions; T : S x Ax S — [0,1] is a probabilistic transition
model describing the dynamics of the modeled system;
and R: S x A x § - R models rewards assigned to
transitions.

In the multi-site commodity trading problem the
state of a process is determined by a price vector

P= {plﬁp%"' sPiy*** yPnyP11, P12y ** ,pnn}7

where the p;’s give the commodity price at location ¢,
the p; ;’s give the transportation price from i to j, and
the p; ;’s give the storage price at site z. Actions rep-
resent trading activities at a specific time step, and are
defined as

a= {011,012,'“ y @iy 'ann},

where a;; is the amount of commodity to be trans-
ported between 7 and j, or stored at location ¢ if j = 3.
Thus, actions define allocations of commodity to differ-
ent transportation (storage) edges. 3

The transition model is defined by a set of mean-
reverting price functions (Equation 1), one for each lo-
cation. For example, the price movements for location
iis

P = pi — e~ (i — pi) + €,

where p; and p! is the current and next step price, 7;
and p; are the parameters of the mean-reverting process
and ¢; is the random component.

31t is easy to see that the number of units to be trans-
ported between different locations is sufficient to define all
trading activities. Simply, the number of units to buy and
sell at different locations can be obtained by comparing the
number of units currently held and the number of units to
be transported from that location in the next step.



Rewards represent partial profits from applying the
strategy and are modeled in terms of step-wise gains.
The gain for transporting one unit of commodity be-
tween location i and j is defined by

9i;(p) = —pi — pij + 75

where p; is the current price of the commodity in loca-
tion ¢, p;; is the cost of transportatlon and p is the price
of the commodity in location j in the next step. The
gain for an action a that allocates commodity to differ-
ent transportation edges is the combination of partial

gains
a(p) = g(p)a=Y_ Y gi(p)aij-

i=1j=1

Using our model, a sequence of cash flows for any
strategy can be expressed in terms of step-wise gains
(rewards) rather than actual money inflow and outflow.
Intuitively, we can replicate payoffs from any strategy
by buying the commodity at the beginning of a decision
step and selling it at the end of that step. Therefore,
the expected NPV model from Equation 2 for a strategy
7 can be expressed in terms of gains as

T
Vi) = Jim EQ v'¢“imp), ()
t=0

where ¢(!) is the gain at time ¢. This is exactly the
discounted, infinite-horizon criterion used commonly
in MDPs (Puterman 1994). Thus, our multi-site in-
vestment problem for expected NPV model can be ex-
pressed and solved as a Markov decision problem.

The optimal trading strategy for the discounted, infi-
nite horizon Markov decision problem is stationary (see
(Bellman 1957; Puterman 1994)) and maps states of
the process to actions. Therefore, the optimal strat-
egy for our problem is #* : R™ x R > R"z, map-
ping the current commodity and transportation prices
to amounts of units to be allocated to different trans-
portation/storage edges.

Solving the expected NPV problem

Using the MDP formulation, Equation 3 for the ex-
pected NPV model and a fixed policy 7 can be rewritten
in Bellman’s form (Bellman 1957) as

V™ (p) = E(grp)(P)) +7 / / VT (p')f(p'Ip)dp,

4)

where E(gr(p)(P)) is the expected one-step gain for
n(p) and f(p'|p) is the conditional probability density
function of the next step prices.

Myopic property

We see that V™ (p) is hard to compute exactly. How-
ever, despite this difficulty the optimal strategy that
maximizes ENPV can be computed efficiently. A key

feature of our model is that prices change indepen-
dently of our trading decisions (see Equation 4). Thus,
the optimal policy is myopic (a greedy one-step policy
is globally optimal) and can be easily computed (see
(Hauskrecht, Pandurangan, & Upfal 1999)).

Theorem 1 The optimal trading strategy for the ez-
pected NPV model is myopic.

Proof The value of the optimal trading strategy is ob-
tained from Equation 4 by maximizing over all possible
actions

V@) =max [Bao)+7 [ [T v @)rwie].

As the next step prices are independent of the action
choice, the value can be rewritten as

v'(e) = maxlEG@a@l+y [ [V E)s@ipe

We see that in order to get the optimal solution for a it
is sufficient to optimize a only with regard to E(ga(p))-
Thus the optimal strategy is myopic. O

The myopic property of the optimal investment strat-
egy is critical for computing the solution for the com-
modity problem. The complete optimal investment

strategy m : R* X R™ — R™ allocates the commodity
units to different transportation edges for every price
vector p. As the number of possible prices and corre-
sponding allocations is very large, it is not feasible to
represent and store the optimal policy.

One way to avoid the computation of the complete
policy is to compute individual price-specific allocations
on-line. The on-line algorithm is invoked repeatedly in
every step. In the general case, the on-line phase may
be very time consuming as it may require to examine
multiple price trajectories spanning multiple time steps.
The myopic property of the decision process (Theorem
1) assures that we can obtain the optimal solution just
by looking on what can happen in the next step. Sim-
ply, in order to decide the best allocation of investment
for some price vector p it is sufficient to choose the al-
location with the best one-step expected gain, and it
is not necessary to consider more distant future and
possible later price movements.

Optimal allocation

To find the optimal trading strategy for the expected
NPV model it is sufficient to optimize expected one-
step gains. Let a be some allocation of units to different
transportation edges. The expected gain for a is

ga (p Z Z az] glj

i=1j=1
To maximize the expectation we need to maximize the
components of the sum. Assuming that Cj; is the con-
straint on the number of units we can transport between
location ¢ and j, the optimal allocation of a;; is easy:

. ={ c(')J if E(gi;(p) > 0;

a:: o
+ otherwise.



Simply, we invest the limit to every edge with a positive
expected gain.

Objective functions with one-step risk
models

Once risk is taken into account, the above strategy of
investing the limit on all edges with positive expected
gains may not be optimal anymore.

Investment risk can be incorporated into the model in
various ways. We focus here on objective functions that
penalize or bound risk in any single step. In particular,
we investigate:

o Mean-Variance model (Markowitz 1991; Alexander &
Francis 1986; Bodie, Kane, & Marcus 1992) that ex-
plicitly relates expected one-step gain and the gain
variance;

e Value at Risk (VaR) model (Jorion 1996) which max-
imizes the expected present value of the investment,
but at the same time limits possible step losses.

The important property of both models is that their
value function is time-decomposable and can be ex-
pressed in the form similar to the expected NPV model

V' (p) = (5)
= max [h(ga(p))+7/_w---/_oo V*(p') f(p'Ip)dp’
= mgv([h(g.a(p)))+*1/_c:---/_c>° V*(p')f(p'Ip)dp’.

Here, h(ga(p)) is a function of a one-step gain (a ran-
dom variable), not just its expectation. Different risk
models use different forms of h. Note that the optimal
policies must be myopic for this formalization.

Mean-Variance (MV) model

The mean-variance model (Markowitz 1991; Alexander
& Francis 1986; Bodie, Kane, & Marcus 1992) quantifies
the risk in terms of the gain volatility. The model is
additive and combines the expected one-step gain and
the gain volatility into a single objective function ha(p):

ha(p) = @E(ga(p)) — BV ar(ga(P)), (6)

where a, 8 > 0. Intuitively the function reflects the fact
that investors like the mean to be large but dislike the
variance. Parameters a, 8 quantify this relation. We
note that this valuation corresponds to the quadratic
utility function (Markowitz 1991).

Using the valuation function from equation 6, our
goal is to find the allocation of commodity maximizing
it. That is:

n* (p) = argmax[aE(ga(p)) — BVar(9a(p))],  (7)

subject to constraints Cj; > a;; > 0 for all a;;. The
variance of the gain for a is:

Var(ga(p)) = alY’a,

L7
A

7 /I
A

7/
i

Figure 1: An example of a concave quadratic function
for two dimensions.

where ¥’ is the gain covariance matrix obtained from
the price covariance matrix ¥ as:

3’ ij)kt) = Cov(gij (p), gre(p)) = ¥*Cov(ej, 1) = ¥* Tyi.

The allocation weights in a must be non-negative
since there is no meaning in our model to negative in-
vestment.? Also, weights a;; should have only integer
values. However, to simplify the problem and its so-
lution we approximate the integer problem by allowing
continuous allocation weights.

Solution for the model Equation 7 defines a
quadratic optimization problem with linear constraints.
The important property of this problem is that the h
function has a unique global optimum solution. We
can observe this from the fact that the Hessian of our
function is a constant negative definite matrix (equal
to —28%’).> Therefore, the function is concave. Fig-
ure 1 illustrates the shape of the function for the 2-
dimensional case. This special case of Quadratic Pro-
gramming is known to have a polynomial time solution
(Vavasis 1991).

Exploiting the structure Solving the optimization
problem requires to optimize all n? possible allocation
weights. We show that this optimization can be carried
out more efficiently by taking advantage of the problem
structure and by solving a sequence of optimizations of
smaller complexity.

The idea of our solution is to exploit the regularities
of the covariance matrix X’ of one-step gains for all
transportation edges, in particular the fact that random

4We note that in some of the problems in finance, similar
to our problem (e.g. portfolio optimization), constraints on
weights can be lifted. This is the case when short-selling
of an asset or security is possible. In that case, negative
weights in the portfolio will reflect a short position.

5Recall that the covariance matrix X' is symmetric, pos-
itive definite.



components of transportation links leading to the same
location are fully correlated. Combining this property
with the MV criterion makes it possible to find the opti-
mal allocation incrementally. The idea of the approach
is based on the following theorem.

Theorem 2 Let a* be the optimal allocation of com-
modity mazimizing expected gains (returns) and penal-
izing risk (volatility). Let, (i,j) and (k,j) be two dif-
ferent transportation links ending in the same target lo-
cation j such that —py — pr; < —pi — pi; holds. Then
ap; >0 only if aj; = Cyj, otherwise aj; = 0.

Proof Gains from transporting one unit of commodity
from i to j and k to j are

9ii(P) = —pi — pij + 7[5 — € (p; — p5) + €3]

9k (P) = =Pk = Pij + 7 [ — €7 (pj — 15) + €]
As the two gains share the same stochastic component
and their difference is always deterministic

9ii(P) — 9k (P) = —pi — pij — [Pk — P;)-

Moreover their covariance terms in ¥ are the same.
Thus, if px — px; > —pi — pij, there is no value in allo-
cating the commodity to the transport link choice from
k before we allocate the maximum, Cjj, to a;;. There-
fore if a}; > 0, af; must be saturated (aj; = Ci;). By
similar argument, a}; < C;; implies ag; =0. D

By using this result we can perform the allocation
of commodity to different transportation edges incre-
mentally by allecating commodity to edges according
to their expected gains, i.e. edges with higher expected
gains for the same target location are allocated first.
This approach translates to a sequence of quadratic op-
timization problems with at most n variables.

The algorithm works as follows: the optimization
starts by considering only transportation choices with
the highest expected gains, one for each target location.
We refer to these edges as active edges. The optimiza-
tion procedure for the MV model is then applied to ac-
tive edges. The solution gives an allocation of units to
all active edges. During the optimization a transporta-
tion edge can reach its maximum capacity; we say that
the edge becomes saturated. Once an edge is saturated
it is removed and no longer considered as a choice. Af-
ter the removal, the transportation edge with the next
highest expected gain (and the same target location)
becomes active and the optimization process continues
with the next step. This is repeated until all edges have
been exhausted or when none of the edges were satu-
rated in the last step.

The optimization steps are not independent. In par-
ticular, every optimization step must take into consid-
eration results of all previous (partial) allocations. The
dependencies between the current and previous steps
are summarized by:

e a vector of target allocations s = {s1, s2,+*- ,8n}, re-
flecting, for each target location, the number of units
of commodity already allocated to edges incident to
that location;

e adjusted capacity constraints {Dj1,:++,Dnn} repre-
senting the remaining capacity of all edges, i.e., the
original capacity less the capacity already allocated
in all previous solutions.

To find the optimal allocation of commodity to ac-
tive set of edges we solve a quadratic program (with
n variables). Let & = {&;,dz,+--,d.} denote a vector
of allocations for the current set of active edges and
E(g;(p)) be the expected gain for the active edge for
target j. Then the optimization task corresponds to:

max{aE(gs(p)) - B [s + 8T E+8)]} @)
subject to constraints:
D; > @; > G for all &;,
where E(ga(p)) = X.;_, E(g;(p))d; is the expected

gain for the portfolio of active edges and 3 is the re-
duced gain covariance matriz, an n X n_matrix of the
gain fluctuations for target locations (Zx = ¥2Zki).
DJ- denotes an adjusted capacity constraint correspond-
ing to the transportation link for a target location j
which is subject to optimization (is active).

During the computation process we keep track of the
number of units allocated to each transportation link
(staring from zero allocations at the beginning). That
is, after every optimization step we apply the following
update:

aj; if not active.

e sp1s Lo .
ol { ay; -1- 3 if link (4, §) is active;

This allows us to recover the optimal allocation a* at

the end. In addition, we update s quantities and adjust

dynamic capacity constraints:

Dis { D;; —a;  if link (4, j) is active;
ij

D;; if not active.

Example Figures 2, 3 and Table 1 illustrate and com-
pare the performance of strategies for different optimal-
ity criteria (the Value at Risk criterion is discussed in
the next section) on a problem with 5 trading sites.
Figure 2 shows the actual step-wise gains obtained for
these criteria using a fixed 50-step trajectory of prices’
fluctuations; each price following a mean-reverting pro-
cess. Table 1 summarizes the results in Figure 2 by
showing real gain averages and their standard devia-
tions. Finally, Figure 3 compares expectations of gains
under different strategies. We see that ENPV always
leads to the maximum expected gain and it also achieves
higher real gains on average. However, step-wise gains
for ENPV are also subject to higher fluctuations. On
the other hand, Mean-Variance (MV) criterion yields
gains that fluctuate less, but at the same time lead to
considerable lower expected gains and also real gains on
average.

Besides the experiments shown here, we have tested
the performance of the MV model for different combi-
nations of parameters a and 8. As expected, higher
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Figure 2: Comparison of three different optimization criteria: Expected NPV (ENPV), Mean-Variance (MV) and
Value at Risk (VaR) on a problem with 5 trading sites and 50-step trajectory of prices’ fluctuations. each following
a mean-reverting process. For each step we plot the real gains for that step. The parameters of the MV model we
use are @ = 1 and 5 = 0.01. We use K = 0 and § = 0.0005 for the VaR model.
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Figure 3: Comparison of expected gains for three different optimization criteria: Expected NPV (ENPV), Mean-
Variance (MV) and Value at Risk (VaR) on a problem with 5 trading sites and 50 step long prices’ trajectories.



ENPV | MV VaR
average real gains || 57.31 | 13.69 | 42.47
standard deviation || 70.64 | 17.49 | 60.54

Table 1: Average of the real gains and their standard
deviation for ENPV, MV and VaR criteria and data
from Figure 2.
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Figure 4: Average running times for markets with vary-
ing number of trading sites.

values of B lead to smaller average gains and smaller
gain fluctuations. Simply, for higher values of 8 we
penalize the variance more and thus we are likely to
sacrifice the opportunity to capture higher gains.

One concern in applying our approach is that the
optimization is carried on-line in every step, and thus
it may lead to large reaction delays for larger problems
(with many trading sites). To see the effect of the size of
the multi-site market on the actual running time of the
optimization problem we ran a set of experiments, vary-
ing the number of trading sites. For each market size
we ran 1000 different parameter settings and averaged
them. To solve the quadratic optimization problem we
use ISML C/Math/Library implementation based on
(Goldfarb & Idnani 1983). Figure 4 shows average run-
ning times, obtained for different market sizes. The
running time (in seconds) increases moderately with the
number of sites. In particular, the solution for 30 dif-
ferent trading sites, which is about the practical limit,
can be obtained very quickly (in about 3 seconds on a
SUN Ultra-10).

Value at Risk (VaR) model

Let K be a loss threshold and 6 the maximum probabil-
ity of losing K or more units. The value of K is called
the value at risk for & (see (Jorion 1996)).

This optimization problem has the form of Equation
5, where we maximize

h(ga(P)) = E(ga(p))

subject to

Ci; 2 ai; > 0 for all a;;
P(ga(p) < —K) < 4. (9)

This is a linear optimization problem with linear
and quadratic constraints. Inequality 9 reduces to a
quadratic constraint by the properties of the normal
distribution. Let z be a normally distributed random
variable with mean g and variance o2, Let k be a value
such that P(z < p—ko) < é holds. The value of k mea-
sures the distance from the mean in terms of a standard
deviation o, such that values smaller than y — ko occur
with probability less than . In the case of a normal
distribution, k is only a function of §, and it is indepen-
dent of p and o. Therefore, in order to limit the losses
of more than K units with probability 1 —J, we set the
value of ks such that it satisfies p — kso > —K.

Therefore, the constraint 9 can be rewritten as

[E(ga(p)) + K]* — k}Var(ga(p)) >0  (10)

which is quadratic in allocation weights a. We can
rewrite the constraint in terms of mean one-unit gains
(vector p) and covariances (X’) as:

al [pp” —kix')a+2KpTa+ K2 >0.  (11)

Let W = [ppuT — k}2’] be the n? x n? matrix defin-
ing the quadratic term. We note that if the matrix W
is negative definite, the problem corresponds to the lin-
ear optimization over the convex space. Thus, it can
be solved efficiently in polynomial time (Papadimitriou
& Stieglitz 1998). However, when the matrix W is not
negative definite we have a non-convex space over which
we optimize. To solve this problem we can apply stan-

dard augmented Lagrangian techniques (see e.g. (Bert-
sekas 1995)).

Using structure to solve the VaR model The
optimization of VaR criterion can be performed more
efficiently by solving a sequence of optimization prob-
lems of smaller complexity. This is the same idea as
used for the structured solution of the Mean-Variance
model and Theorem 2 also applies to this case. Simply,
the only sources of stochasticity are price fluctuations at
different target locations. Thus, if two different trans-
portation edges share the same target location, their
stochastic component is the same and for the rational
and risk averse investor the transportation choice with
better expected gain should be chosen first. Therefore,
under transportation capacity constraints, the global
optimization can be carried incrementally by solving
a sequence of optimization problems with n variables,
instead of the optimization with n? variables. The glob-
ally optimal solution is then constructed from results of
partial solutions.

To solve the problem, we optimize repeatedly the (re-
duced) problem with n variables:

max E(gs(p))



subject to,
D; > a; > 0, for all aj;

[SM + E(ga(p)) + K)* — k3 [(s + &) £(s + &) >0

The notation used and the basic algorithm applied are
the same as in the Mean-Variance case. The only differ-
ence is that for the VaR criterion we have to add con-
stant SM which represents the sum of expected gains
for all previous solution. This quantity is updated dy-
namically after every step and is needed to assure that
the non-linear constraint is not violated during the op-
timization process.

Example Figures 2, 3 and Table 1 compare the VaR
criterion to ENPV and MV criteria on a problem with
5 sites. We note that the VaR choices do not penalize a
large variance when expectation is also high. Instead,
it only tries to limit the probability of losses. Thus the
real gains obtained for the VaR model vary more than
those of the MV model and also tend to achieve higher
gains (both under expectation and on average). From
the graphs we observe that in many instances the alloca-
tions for the VaR criterion replicate exactly the ENPV
choices. However, in some instances, when a chance of
losses exceeds the confidence threshold, the approach is
more conservative and the allocation it chooses is differ-
ent. For example, in 50 simulation steps in Figure 2 the
VaR approach (with threshold gain 0) never lead to the
negative gain, while there are seven different cases of
negative gains for ENPV and two for the MV criterion.

Conclusion

We addressed the complex problem of finding optimal
strategies for trading commodity in a multi-market en-
vironment. We investigated various objective criteria
based on expected net present value (ENPV) and risk
preferences of the investor. Different criteria can lead
to optimization problems of different complexity. We
showed that under the assumption of equal buy and sell
prices, a number of criteria lead to the myopic portfolio
optimization problem. This is very important as the
computation of the optimal strategy needs to take into
account only the current and next step prices and not
all possible future price trajectories.

We analyzed and solved the problem for the expected
NPV criterion and two commonly used risk-based cri-
teria: Mean-Variance and Value at Risk models. We
showed that in both risk-based models the optimiza-
tion problem reduces to some form of the quadratic op-
timization problem. To further improve the efficiency
of the solution we exploited the structure of the co-
variance matrix, in particular the fact that gains for
the same target locations are fully correlated. This al-
lowed us to reduce a large optimization problem for
both risk-based criteria into a sequence of problems of
smaller complexity. The empirical results obtained for
the mean-variance and value at risk models support the
feasibility of the solution and its practical applicability.

We note that our results and algorithms can be ap-
plied directly to any multi-site model in which the next-
step price fluctuations are normally distributed, and
thus not necessarily mean-reverting. The current model
can be extended in a number ways. For example, in-
teresting issues will arise if we refine the market mod-
els and extend them to include price spreads, trading
(buy, sell) constraints, prices sensitive to supply and de-
mands, etc. Another interesting direction is the inves-
tigation and application of more complex risk models,
reflecting different preferences of an investor.
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